

ТЕХНОЛОГИЯ МАТЕРИАЛОВ И ИЗДЕЛИИ ТЕКСТИЛЬНОЙ И ЛЕГКОЙ ПРОМЫШЛЕННОСТИ

РАСЧЕТ СИЛЫ ТРЕНИЯ ВОЛОКОН О ПЕРЕДНЮЮ ГРАНЬ ЗУБА ДИСКРЕТИЗИРУЮЩЕГО БАРАБАНА ПРЯДИЛЬНОЙ МАШИНЫ

Жуманиязов Кадам Жуманиязович

д-р техн. наук, профессор, Ташкентский институт текстильной и легкой промышленности, Узбекистан, Ташкентская область, г. Ташкент

Матисмаилов Сайфулло Лалашбаевич

канд. техн. наук, доцент, Ташкентский институт текстильной и легкой промышленности, Узбекистан, Ташкентская область, г. Ташкент

Юлдашев Жамшид Камбаралиевич

канд. техн. наук, Наманганский инженерно-технологический институт, Узбекистан, Наманганская область, г. Наманган E-mail: j q vuldashev@mail.ru

Бобожанов Хусанхон Тохирович

докторант, Наманганский инженерно-технологический институт, Узбекистан, Наманганская область, г. Наманган E-mail: BHT1979@mail.ru

CALCULATION OF THE FRICTIONAL FORCE ON THE FIBER FRONT FACE OF THE TOOTH IS SAMPLED DRUM SPINNING MACHINE

Qadam Jumaniyazov

Doctor of technical sciences, Tashkent Institute of Textile and Light Industry Uzbekistan, Tashkent region, Tashkent

Sayfullo Matismailov

Candidate of technical sciences, Tashkent Institute of Textile and Light Industry Uzbekistan, Tashkent region, Tashkent

Jamshid Yuldashev

Candidate of technical sciences, Namangan Institute of Engineering and Technology Uzbekistan, Namangan region, Namangan

Husanhon Bobojanov

doctoral student, Namangan Institute of Engineering and Technology Uzbekistan, Namangan region,
Namangan

КИДАТОННА

В статье приведены результаты теоретических исследований по определения силы трения о переднюю грань зуба двухзаходного дискретизирующего барабана прядильной машины.

ABSTRACT

The results of theoretical studies on the determination of the frictional force on the front face of the tooth doublethreaded sampled drum spinning machine.

Ключевые слова: волокна, дискретизация, угол, сила трения, трения, скорость, радиус, комплекс волокон. Keywords: fibers, sampling, angle, friction force, friction, speed, radius, fiber complex.

Библиографическое описание: Расчет силы трения волокон о переднюю гран зуба дискретизирующего барабана прядильной машины // Universum: Технические науки : электрон. научн. журн. Жуманиязов К.Ж. [и др.]. 2018. № 11(56). URL: http://7universum.com/ru/tech/archive/item/6605

Рассмотрим анализ взаимодействия зубьев дискретизирующего барабана в зоне дискретизации. На рис.1. представлена схема взаимодействия зуба дискретизирующего барабана в точке 1 зоны дискретизации.

При анализе схемы дискретизации выявлено, что каждый зуб дискретизирующего барабана действует на волокно ударной силой. Нормальная, тангенциальная и осевая составляющие данной силы зависит от геометрических и кинематических параметров системы. В рекомендуемом дискретизирующем барабане зубья имеют угол P передней грани. Кроме того, дискретизирующий барабан выполнен двухза- ходным. Поэтому во время дискретизации значительно осевая составляющая увеличивается модействия. При этом угол винтовой линии фактически совпадает с углом наклона передней грани зуба относительно оси дискретизирующего барабана. Силовое воздействие зуба на бородку осуществляется в направлении р касательной к окружности вершин зубьев и распределяется на нормальную, тангенциальную и осевую составляющие [1].

$$p = p^n + p + p, \tag{1}$$

где p^n - нормальная составлявшая силы p; p^m , p^0 - тангенциальная и осевая составляющие силы воздействия зуба на волокнистую бородку в точке 1:

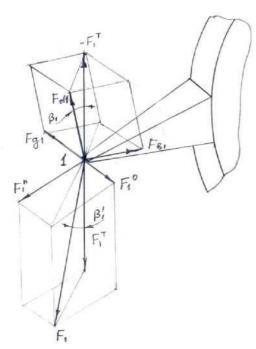


Рисунок 1. Схема взаимодействия зуба дискретизирующего барабана в точке 1 зоны дискретизации (начало процесса дискретизации)

Согласно схеме действия сил, на рис. 1 имеем:

$$p^{T} = p \cos P[; p^{n} = p \sin P[\blacksquare \cos P'';$$
$$p \setminus = p \sin p \setminus \blacksquare \sin P''$$
 (2)

где P'' - угол между силами воздействия p и его тангенциальным составляющим p^n ; P'' - угол между проекцией сил p на горизонтальную плоскость и нормальным составляющим p^n .

Следует отметить, что сила сопротивления захватываемые зубьями волокна согласно схемам на рис. 1. составляющие:

$$-F^{r} = F + F + F + F = gl \qquad (3)$$

ипи

$${}^{p}_{J = P} I^{cos}^{P} \setminus {}^{p} g l = ; p_{n} = M y [pP + {}^{III} p_{G}]$$

где p - сила трения между волокном и передней гранью зубьев дискретизирующего барабана.

Сила трения между волокнами и передними гранями зубьев в точке 1 дискретизации определяется из выражения:

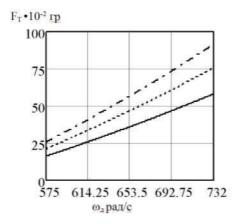
Согласно исследованиям В. Рохлена [2] при извлечении из бородки гарнитурой изменяет скорость волокна или комплекс волокон с V на V. Это изменение связано с действием импульса сил p, за время At на комплекс массой μ . Скорость комплекса изменяется на коротком расстоянии Ax. Авторы, используя закон изменения количества движения, получили выражение:

$$\begin{array}{ll} p = & (\-^{40}\text{-}) \circ_0 = a^2; \\ 2Ax & 9p^{0 \text{nm};} \end{array}$$

$$4 = p, \quad \blacksquare \Gamma \setminus {}^{(5)}$$

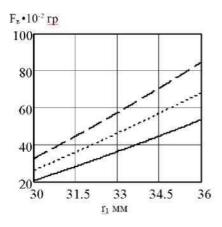
где ω_n , a - угловые скорости питающего цилиндра и дискретизирующего барабана; r_n , r - радиусы питающего цилиндра и дискретизирующего барабана.

Подставляя (5), в (4) получим выражение для определения силы трения захваченных зубьями волокон и передней гранью:

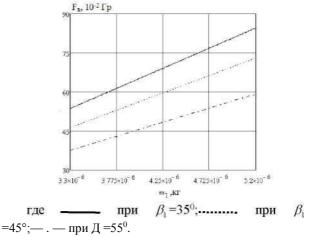

$$\underline{M \, \text{Щ}\cos P'' \, \cos P \setminus (wg \, \text{\mathbb{N}^2-} \, wl \, P \, \, ptg^2 P \setminus \ + \)}$$
 P,
$${}^2 \text{$\mathbb{N} B^a A X^{\wedge P} \setminus \)}$$
 (2)

где $a_{\scriptscriptstyle M}$ - величина текущего угла $a_{\scriptscriptstyle AB}$, обхватывающий текущее значение дуги AB, численный расчет сил трения и осевых сил, действующих в зоне захвата волокон зубьями дискретизирующего барабана выполнен при следующих исходных значениях параметров: m=3,0^10-6 кг, P1=350, Pп=750, ГАВ=36 мм, Γ 1=32 мм, Γ 1=350, Γ 1=32 мм, Γ 1=350, Γ 2=350, Γ 3=350, Γ 4=350, Γ 5=350, Γ 5—350, Γ 5—350,

На рис 2. представлены графические зависимости изменения силы трения волокна о переднюю


грань зуба при вариации угловой скорости дискретизирующего барабана пневмомеханической прядильной машины.

Анализ полученных графиков показывает, что с увеличением угловой скорости барабана сила трения волокон о переднюю грань зуба увеличивается по линейной закономерности. Так при угловой скорость 535 рад/с и массе волокон 3.3×10^{-6} кг сила трения равна $18.2^{\wedge} 10^{-2}$ гр.


где при ш=5,2И0"6кг, — при ш=4,2И0"6кг, — при ш=3,3И0"6кг

а - зависимости изменения силы трения волокон о переднюю грань зуба в функции угловой скорости дискретизирующего барабана прядильной машины.

где — при ш=3,3И0"6кг,.....при ш=4,4И0"6кг, — при ш=5,2И0-6кг

б - графические зависимости изменения силы трения волокон о переднюю грань зуба от увеличения радиуса дискретизирующего барабана

в - графические зависимости изменения силы трения волокон о переднюю грань зуба дискретизирующего барабана от увеличения массы волокон

Рисунок 2. Графические зависимости изменения силы трения

С увеличением радиуса дискретизирующего барабана при постоянной угловой скорости возрастает линейная скорость захваченных волокон зубьями дискретизирующего барабана. Это приводит к увеличению коэффициента растяжимости и увеличению производительности, тем самым повышению значения силы трения волокон о переднюю грань зубьев барабана. При массе волокон 3,3И0"6кг и г =34,5 мм сила трения волокон достигается 43,7И0"2гр, а при шв=5,2^10"6кг сила трения возрастает до 70,3И0"2гр (см. рис.2б).

На рис 2в. приведены графические зависимости изменения силы трения волокон о переднюю грань зубьев дискретизирующего барабана от увеличения массы волокон при различных значениях переднего угла зуба. При массе волокон 5,2ИО-6кг и Pi=55° сила трения будет 58,2ИО"2гр, а при Pi=35° сила трения о переднюю грань зуба дискретизирующего барабана увеличивается до 84,25ИО"2гр. Известно, что увеличение силы трения волокон о переднюю поверхность зубьев дискретизирующего барабана обеспечивает захват и унос волокон зубьями барабана. Поэтому рекомендуемыми значениями являются при 5,2ИО"6кг Pi=30°^40°.

Увеличение углевой скорости дискретизирующего барабана приводит к увеличению силы трения, особенно при значениях угла обхвата меньше чем 0,6 рад. Если учесть, что увеличение силы трения приводит к увеличению процесса дискретизации волокон, целесообразным считается выбор угла обхвата в переделах 0,75^1,025 рад при ГАВ=33^35 мм. Рекомендуемыми значениями угловой скорости, обеспечивающей выше указанные условия является 653,5^732 рад/с. Это означает, чем больше угловая скорость, тем больше производительность. Увеличение скорости более чем 732 рад/с может приводить к обрывам волокон при незначительных значениях угловой скорости. Поэтому для рекомендуемых значений радиусов г, и г_{АВ} наиболее подходящими являются вышеприведенные

значения угловой скорости дискретизирующего барабана.

Заключение: на основе условия равновесия волокна на передней грани зуба дискретизирующего

барабана определена формула для расчета силы трения волокна, получены графические зависимости. Обоснованы значения параметров зоны дискретизации.

Список литературы:

- 1. Бать М.И. и др «Теоретическая механика»: Наука, М., 1968, 625 с.
- 2. Тимошенко С.П. и др. «Колебания в инженерном деле»: Машиностроение, М., 1985, 472 с.