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Abstract. In this paper, we have investigated superfluid density, ρs, and the critical current density, Jc,
in cuprate superconductors. The Chandrasekhar and Einzel approach was applied to calculate the super-
conducting order parameter and superfluid density with different pairing scenario, such as isotropic s-,
anisotropic s-wave, and nodal d-wave, as well as an extended d-wave symmetry of the gap. Moreover, the
critical current density is calculated for the extended d-wave gap suggested by angle-resolved photoemis-
sion spectroscopy (ARPES) mesurements in anisotropic cuprate superconductors. The calculated results
for the temperature-dependent superfluid density ρs(T ) and critical current density Jc(T ) were compared
with the experimental data obtained for various cuprate superconductors. A good quantitative agreement
was found between theory and experimental data for all cases considered.

1 Introduction

Among many superconducting properties, the symme-
try of the order parameter is an important one. It
is usually assumed that the order parameter in high-
temperature superconducting cuprates (HTSCs) has a
pure d-wave symmetry. Corresponding evidence of this
assumption for both the electron- and the hole-doped
classes of HTSCs stems from experiments where mainly
surface phenomena are probed. In this regard, angle-
resolved photoemission spectroscopy (ARPES) mesure-
ments in anisotropic cuprate superconductors have
given key information on the temperature and angle
dependence of the superconducting energy gap. The
early suggestion is that superconductivity in cuprate
superconductors might exhibit unconventional d-wave
symmetry of the order parameter [1–3]. For hole-doped
cuprate superconductors, it has been well documented
that the superconducting energy gap has a d-wave form
Δ = Δ0 cos(2ϕ). This basic form of the d-wave super-
conducting energy gap was first observed in ARPES
experiments [4,5]. While the symmetry of the supercon-
ducting energy gap is believed to be d-wave for the hole-
doped region, the situation for electron-doped super-
conducting materials is more controversial.

Recently, Khasanov et al. [6] obtained the tem-
perature dependencies of the in-plane (λab) and out-
of-plane (λc) components of the magnetic field pen-
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etration depth of the electron-doped superconduc-
tor Sr0.9La0.1CuO2 using magnetization measurements.
The measured λab and λc have analyzed in terms of a
two-gap model with mixed s + d-wave symmetry of the
order parameter. Furthermore, several studies [7–9,11]
have suggested that the angular dependence of the gap
function in electron-doped cuprates can significantly
differ from the simple functional form Δ0 cos(2ϕ),
which appears to describe hole-doped cuprates.

Especially, the superconducting energy gap is signif-
icantly nonlinear in the vicinity of the nodal direc-
tions. In this regard, evaluation and analysis of the
temperature-dependent superfluid density in supercon-
ductors is a powerful tool for studying pairing symme-
try [12,13]. Although it does not detect order parame-
ter phase, this bulk probe is very sensitive to the gap
structure on the Fermi surface. Therefore it can be used
to verify the conclusions provided by the gap-mapping
techniques such as ARPES [14–19] or directional tun-
neling using scanning tunneling spectroscopy (STS)
[20–23]. The ARPES investigations produce a direct
and high resolution measurements of the normal and
quasiparticle density of states around the Fermi surface
in superconductors. It is mainly motivated by the search
for reliable data in the study of unconventional super-
conductors, including cuprates. Also, ARPES exper-
iments suggest that the gap variation on the Fermi
surface in HTSC should take into account long-range
electron-phonon interactions, which leads to the inclu-
sion of the higher angle harmonics, consistent with the
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d-wave symmetry of the gap. In addition, from the point
of view of the possibility of any large-scale practical
application of superconductivity, it depends primarily
on the maximum current density that superconductors
can carry in one way or another.

In the present paper, we examine the impact of pair-
ing symmetry on the superconducting gap, superfluid
density and critical current density in cuprate super-
conductors. In this regard, using the Chandrasekhar
and Einzel approach, we calculate the superfluid den-
sity from the temperature dependence of the supercon-
ducting energy gap Δ(T ), thus allowing us to fit critical
current density data for cuprate superconductors.

2 Typical gap functions for singlet pairing
states

The microscopic superconducting state formed as a
result of condensation of the Cooper pairs is protected
by the energy gap. The pairing interaction between the
two electron of a Cooper pair determines the supercon-
ducting energy gap function. Thus, it is important to
determine the structure of the gap in order to under-
stand the mechanism of superconductivity. In high-Tc

cuprate superconductors, it has been well established
that the superconducting energy gap may have a d-
wave function.

The importance of the superconducting energy gap
function becomes apparent at nonzero temperatures,
when it is possible to generate quasiparticle excitations
and a paramagnetic current. In order to use Chan-
drasekhar and Einzel model for calculating superfluid
density, a form for the gap function is required. For spin
singlet pairing states takes the form,

Δ(T,k) = Δ0(T )g(k) (1)

where g(k) is the dimensionless function of maximum
unit magnitude that describes the angular variation of
the superconducting energy gap on the Fermi surface.
Δ0(T ) carries the temperature dependence and should
be determined from the self-consistent gap equation.
The latter involves a Fermi surface average of g(k), so
in general Δ0(T ) depends on the pairing symmetry.

An extended d-wave gap function can be written as
[25]

Δ(T, ϕ) = Δ0(T )g(ϕ)
= Δ0(T )[B cos(2ϕ) + (1 − B) cos(6ϕ)]

(2)

where B is the doping-dependent fitting parameter,
cos(6ϕ) denotes the next harmonic corresponding to
the d-wave symmetry of the gap.

In addition, the anisotropic s-wave gap function with
two- and four-fold symmetry has the following form,
respectively [9,10]

Δ(T, ϕ) = Δ0(T )|[cos(2ϕ) − A cos(6ϕ)]|, (3)

and

Δ(T, ϕ) = Δ0(T )[1 + A cos(4ϕ)], (4)

where the parameter A defines an anisotropy.

3 The superfluid density for different
superconducting pairing symmetries

In this section, we will briefly describe the main results
of a semi-classical approach for the penetration depth
proposed by Chandrasekhar and Einzel [24]. Taking
into account a Fermi surface and the gap function, this
approach provides a generalized relationship between
the supercurrent response to the magnetic vector poten-
tial given an arbitrary band structure and energy gap.
We restrict ourselves to singlet pairing states.

In an anisotropic superconductor and in the London
approximation (λ > ξ), the supercurrent density J is
related to the vector potential A by a response tensor
T so that

J = −TA, (5)

and the response tensor can be defined as follows

T =
e2

4π3c

∫
d3k

(
−∂nk

∂εk
+

∂f(Ek)
∂Ek

)
(vkvk). (6)

The penetration depth components along a specific
direction with respect to the crystalline axes can be
computed by using the relationship

λii =
(

c

4πTii

)1/2

, i = x, y, z (7)

and it should be noted that the λii are not the compo-
nents of a vector or a tensor, but rather are the different
penetration depths with respect to the crystalline axes.
However, the effective mass can be defined by

mii =
ne2

cTii
, (8)

which gives us the familiar London relation

λii =
(

miic
2

4π2

)1/2

. (9)

Consider now the structure of the response tensor, T,
shown in Eq. (6). The response tensor consists of two
terms which usually are called the diamagnetic and the
paramagnetic terms (TD) and (TP), such that

T = TD − TP. (10)
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The above two terms of the response tensor are related
to the normal and superconducting state properties
according to the formulas

TD =
e2

4π3c

∫
d3k

(
−∂nk

∂εk

)
(vkvk) (11)

and

TP =
e2

4π3c

∫
d3k

(
−∂f(Ek)

∂Ek

)
(vkvk) (12)

By considering the fact that the derivatives in Eqs.
(11) and (12) are zero unless |εk − μ| � Δ(k) and also
that Δ(k) << μ, the value of the tensor vkvk can be
replaced by its value at εk = μ, which is vFvF. For this
same reason, we can make the substitution

d3k −→ dSFdεk

�|vk| (13)

where dSF is a constant energy surface element and vk

is the magnitude of the Fermi velocity. These approxi-
mations give us

TD =
e2

4π3�c

∮
dSF

∞∫

0

dεk

(
−∂nk

∂εk

)
vkvk

|vF|

∼= e2

4π3�c

∮
dSF

vkvk

|vF| (14)

and

TP
∼= 2 · e2

4π3�c

∮
dSF

vkvk

|vF|

×
∞∫

Δ(k)

dEk

(
−∂f(Ek)

∂Ek

)
Ek√

E2
k − Δ2(k)

.

(15)

where f(Ek) = (eEk/kBT + 1)−1 is the Fermi-Dirac dis-
tribution function, kB is Boltzmann’s constant.

It should be noted that the analysis of Eqs. (14) and
(15) leads to the following conclusions:

(i) As T −→ 0, TP −→ 0 and as T −→ Tc, TP −→ TD.
(ii) If Δ(k) is anisotropy of TP is temperature-independent

and its anisotropy is the same as the anisotropy of
TD.

(iii) If Δ(k) is anisotropic, then the anisotropy of TP is
affected by the anisotropies of both εk and Δ(k),
and is temperature-dependent.

The normalized superfluid density, ρs(T ), is the ratio
of the concentration of superconducting electrons to

the total concentration of available charge and can be
related to the penetration depth by

ρs(T ) =
ns(T )
ns(0)

=
(

λ(0)
λ(T )

)2

(16)

Then the normalized superfluid density components
can be calculated as

ρii =
λ2

ii(0)
λ2

ii(T )
=

Tii(T )
Tii(0)

, (17)

where generally we have

Tij =
e2

4π3�c

∮
FS

dSF

×

⎡
⎢⎣vi

Fvj
F

|vF|

⎛
⎜⎝1 + 2

∞∫

Δ(k)

∂f(E)
∂E

N(E)
N(0)

dE

⎞
⎟⎠

⎤
⎥⎦

(18)

where N(E) is the quasiparticle density of states and
E =

√
ε2k − Δ2(k) is the quasiparticle energy spectrum.

By using Eqs. (17) and (18), the superfluid den-
sity can be calculated in terms of the superconduct-
ing gap,Δ, and the single particle excitation energy
with respect to the Fermi level, εF, in a straightforward
way for a general Fermi surface geometry. Equation
(18) provides the connection between the experimen-
tally measured penetration depth and the microscopic
superconducting state.

Expressions for the normalized superfluid density can
be obtained for two general cases of pairing symmetry.
For isotropic s-wave pairing of both two-dimensional
(2D) cylindrical and three-dimensional (3D) spherical
Fermi surfaces, the integral can be simplified by giving
the normalized superfluid density as [12],

ρs(T ) =
(

λ(0)
λ(T )

)2

= 1 − 1
2πkBT

×
∞∫

0

cosh−2

(√
ε2 + Δ2(T )

2kBT

)
dε. (19)

Also for d-wave cuprate superconductors with a 2D
cylindrical Fermi surface, the temperature dependence
of the normalized superfluid density can be simplified
in the form

ρs(T ) = 1 − 1
2πkBT

2π∫

0

(
cos2(ϕ)
sin2(ϕ)

)

×
∞∫

0

cosh−2

(√
ε2 + Δ2(T, ϕ)

2kBT

)
dεdϕ.

(20)
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where ϕ is the angle around the Fermi surface sub-
tended at (π, π) in the Brillouin zone and Δ(ϕ) is the
angular dependence of the superconducting energy gap
function due to the variation of the gap around the
Fermi surface.

To calculate the superfluid density, the temperature
dependence of the gap magnitude has to be deter-
mined from the self-consistent gap equation. The self-
consistent equation of the gap depends on the pairing
symmetry and the details of the Fermi surface, it takes
the form

2π∫

0

∞∫

0

g(ϕ)2

⎡
⎣ tanh

[
1

2kBT

√
ε2 + [Δ(T )g(ϕ)]2

]
√

ε2 + [Δ(T )g(ϕ)]2

−1
ε

tanh
ε

2

⎤
⎦dεdϕ = 0.

(21)

Upon calculating superconducting energy gap from
Eq. (21), and then, in turn superfluid density from Eq.
(20) one will be able to calculate the critical current
density. So that the critical current density can be writ-
ten as follows:

Jc(T ) = 2eρs(T )vc(T ), (22)

with critical velocity of superfluid carriers,

vc(T ) =

√
Δ(T, ϕ)

mc
, (23)

where mc is the effective mass of charge carrier.

4 Numerical results and discussion

The pairing state of high-Tc superconductors has not
been fully understood, though many experimental
results supporting the d-wave pairing have been reported.
In addition, it follows from many experimental and the-
oretical studies that in order to study the influence
of order parameters on the behavior of the superfluid
density and critical current density, it is important to
know the pairing symmetry. Now we will show the influ-
ence of the different order parameter symmetries to the
temperature-dependent curves of the superfluid density
and the critical current density. In order to study the
temperature-dependent curves of the superfluid density
and the critical current density, we applied an extended
d-wave model to cuprate superconductors.

First, we examine the variation of the d-wave gap
magnitude around the Fermi surface for the follow-
ing cases: the extended d-wave gap with B = 0.88 for
underdoped (Tc = 80 K) Bi2Sr2CaCu2O8+δ (Bi2212)
[25]; B = 1 for overdoped Bi-2212 (Tc = 80 K)

[25]; B = 0.78 for optimally doped (Tc = 35 K)
(Bi,Pb)2(Sr,La)2CuO6+δ (Bi-2201) [8]; and B = 1.43
for optimally doped (Tc = 26 K) electron-doped cuprate
Pr0.89LaCe0.11CuO4 (PLCCO) [16], respectively. Plots
of the angular parts g(ϕ) of the superconducting energy
gaps for these cases are presented in Fig. 1a. The vari-
ation of gap’s magnitudes for the same compounds is
shown in Fig. 1b. Note an unusual value for B in the
case of PLCCO that exceeds 1 and, as we show below,
results in a quite different gap topology and resulting
superfluid density as a function of temperature. Figure
1c also shows the angular part of the anisotropic s-wave
function with two- and four-fold symmetry plotted on
the polar graph as a dashed line (A = 0.30) and a solid
line (A = 0.25), respectively.

Figure 2 shows the superconducting energy gap Δ of
the above compounds as a function of normalized tem-
perature (T/Tc) for the isotropic and the anisotropic
s-wave, nodal d-wave, and the extended d-wave sym-
metries obtained from numerical solutions of the self-
consistent gap equations. Taking a model d-wave gap,
Δ(T, ϕ) = Δ0(T )[B cos(2ϕ)+(1−B) cos(6ϕ)], we have
found that the temperature evolution of the extended
d-wave gaps, shown in Fig. 2 are very similar to the
isotropic gap but with a larger zero temperature gap
of Δ(0) = 2.14kBTc. Further, one can calculate the
same for the case of the anisotropic s-wave gap, e.g.
Δ(T, ϕ) = Δ0(T )[1 + A cos(4ϕ)]. This model gap has
four-fold oscillations, similar to the two-fold of the
nodal d-wave case, but is finite valued for all ϕ, while
the parameter A describes the degree of anisotropy.
If one takes A = 0.292, the maximum value of the
anisotropic s-wave gap at T � 0 K is 1.67kBTc, The
temperature dependence of the anisotropic s-wave type
Δ shows very similar behaviour to the other cases,
and lies between those graphics, corresponding to the
isotropic s- and d-wave scenarios.

Further, the primary result is the temperature depen-
dence of the superfluid density, calculated with the
extended d-wave gap and the anisotropic s-wave gap
in the form of Eqs. (2) and (4), respectively, as if all
of this contributed to superconductivity. These depen-
dencies are presented in Fig. 3 from which one can see
that the superfluid density dependencies for the s- and
d-wave cases are differ significantly. While this may in
principle exist, this behavior is unlikely and implies that
the spectral gap measured by ARPES in cuprate super-
conductors is a combination of a nodal d-wave (B = 1)
superconducting gap and a pseudogap that does not
contribute to condensation. However, the pseudogap
affects the spectral density of quasiparticles, and this
must be taken into account [15–19] when calculating
the superfluid density. To reliably estimate the density
of a superfluid density, accurate measurements of the
temperature-dependent penetration depth as well as its
value at zero temperature are required.

Now, let us compare our results of calculation of
the superfluid density with experimental data in single
layer tetragonal compound Tl2Ba2CuO6+δ (Tl-2201) at
almost optimally doping (Tc = 78 K) [26], in 15% Y-
doped Bi-2212 (i.e., Bi2.1Sr1.9Ca0.85Y0.15Cu2O8+δ) at
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(a) (b) (c)

Fig. 1 a Angular part of the superconducting energy gap of underdoped Bi-2212 (B = 0.88), overdoped Bi-2212 (B = 1),
optimally doped Bi-2201 (B = 0.78) and PLCCO (B = 1.43) cuprates. b Variation of the d-wave gap magnitudes of
underdoped Bi-2212 (B = 0.88), overdoped Bi-2212 (B = 1), optimally doped Bi-2201 (B = 0.78) and PLCCO (B = 1.43)
cuprates around the Fermi surface for each case. c Angular part of the anisotropic s-wave gap function is calculated using
Eqs. (3) and (4) with two values of the anisotropy parameters

Fig. 2 Superconducting energy gap as a function of nor-
malized temperature (T/Tc) for isotropic and anisotropic s-
wave, nodal d-wave, as well as the extended d-wave symme-
tries obtained from numerical solutions of the self-consistent
gap equations

optimal doping, δ = 0.16 (maximum Tc = 90 K) [27],
and in pure Bi-2212 (Tc = 93 K) [28], respectively.
Figure 4 shows the results of the d-wave calculations
(solid lines, Eq. (20)). Symbols show the experimen-
tal data. To calculate the temperature dependence of
the superfluid density, the superconducting gap param-
eter is obtained from the numerical solution of the self-
consistent gap Eq. (21) with extended d-wave symme-
try. Thus, for optimally doped Tl-2201, we take the
value of parameter B equal to 0.9; B = 0.88 for 15%
Y-doped Bi-2212; and B = 1.0 for pure Bi-2212, respec-
tively. A characteristic feature of this theory is linear
behavior of ρs at low temperatures. Here, the coinci-
dence of calculations and experimental data can be con-
sidered as proof of d-wave pairing.

In Fig. 5, we compare our calculated ρs as a function
of temperature with recent experimental AC suscepti-

Fig. 3 The temperature dependence of the superfluid den-
sity calculated for isotropic and anisotropic s-wave, nodal d-
wave (for B = 1.0), as well as three different non-monotonic
d-wave gaps (for B = 1.43, 0.88, and 0.78), respectively

bility data given by Khasanov et al. [6] for electron-
doped cuprate superconductor Sr0.9La0.1CuO2. One
feature of ρs(T ) in Fig. 5 is that the symmetry of the
gap in electron-doped cuprates changes from a pure d-
wave to an extended d-wave. The reason for this change
is that the superfluid density in the superconducting
state is especially sensitive to changes in anisotropy
(i.e., to changes in parameter B) (see Ref. [25]). Fur-
thermore, it is very important to note that at low tem-
peratures ρs(T ) linear depends on the temperature.

For B ≥ 1, the superfluid density exhibits nor-
mal convex behavior, while for B < 1, the behav-
ior is concave. As proof of this, for electron-doped
cuprates, our results show that the behavior differs
significantly from that of hole-doped analogs, and the
non-monotonic gap creates a superfluid density with
B = 1.43, which indicates a significant contribution
from the second harmonic of the dx2−y2 order param-
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Fig. 4 The superfluid density (ρs ∝ λ−2) plotted as a
function of temperature. Symbols: experimental data in
single layer tetragonal compound Tl2Ba2CuO6+δ (Tc =
78 K) [26], experimental AC susceptibility data in
Bi2.1Sr1.9Ca0.85Y0.15Cu2O8+δ at optimal doping, δ = 0.16
(maximum Tc = 90 K) [27] and in Bi2Sr2CaCu2O8 (Tc = 93
K) [28]. Solid lines show the results of the d-wave calcula-
tions

Fig. 5 Comparison of our calculated results for ρs(T )
(solid line) with experimental AC susceptibility data (open
circles) reported by Khasanov et al. [6] for electron-doped
cuprate superconductor Sr0.9La0.1CuO2

eter. We have demonstrated that the non-monotonic
gap function, Eq. (2), should lead to an unusual sub-
linear temperature dependence of ρs. It is quite possible
that such an unusual gap structure is the result of the
interference of a superconducting gap and a pseudogap.
In this case, the superfluid density is determined only
by the superconducting gap, and measurements of the
penetration depth will be very useful for elucidating
physics.

Let us now consider the critical current density Jc,
which is one of the main characteristics of high-Tc

superconductors. It is known that the critical cur-
rent density is strongly temperature dependent. In this
work, for comparison, we used expression (22) for the
critical current density in zero magnetic field (H = 0).

Fig. 6 Comparison of the theoretical results for Js(T ) cal-
culated with the extended d-wave gap (solid line) with the
corresponding experimental data obtained from [29] (open
circles) for Tl2Ba2CaCu3O8+δ, from [30] (solid circles) for
Bi2Sr2CaCu2O10+δ and from [31] (solid triangles) for a 0.5%
Zn-doped Bi-2212

The critical current density Jc(T ) is calculated as a
function of temperature and compared with the exper-
imental data, as shown in Fig. 6. To perform these fits,
we used an extended d-wave gap with B = 0.88. In
Fig. 6 shows the experimental data for the epitaxial
Tl2Ba2CaCu3O8 thin films, obtained by Holstein et. al.
[29] (open circles), for the epitaxial Bi2Sr2CaCu2O10+δ

thin films, obtained by Hänisch et. al. [30] (solid circles),
and for a 0.5% Zn-doped Bi-2212 thin film, obtained
by Wagner et al. [31] (solid triangles). In the numerical
calculations of Jc(T ), we used the following parameters
in order to obtain the best fit: the superfluid density
at a temperature of almost zero Kelvin, ρs(0) is equal
to 0.73 × 1019 cm−3, mc = 1.8me, (where me is the
mass of a free electron) and the value of Tc = 100
K for Tl2Ba2CaCu3O8; ρs(0) = 0.67 × 1019 cm−3,
mc = 1.4me, and Tc = 86 K for Bi2Sr2CaCu2O10+δ;
ρs(0) = 0.8 × 1019 cm−3, mc = 2.2me and Tc = 80 K
for Bi-2212+0.5% Zn, respectively.

Figure 7 shows Jc(T ) curves for the mixed rare
earth (Nd,Eu,Gd)Ba2Cu3O7 thin films in the zero mag-
netic field. Experimental Jc(T ) data obtained by Cai
et. al. [32] for the mixed rare earth thin films of
(Nd,Eu,Gd)Ba2Cu3O7−δ (NEG123) and GdBa2Cu3O7−δ

(Gd123), and the respective theoretical fitting curves
calculated with the extended d-wave gap.

We obtained reasonable fits to the experimental data
by taking appropriate sets of parameters: B = 1.0,
ρs(0) = 2.3 × 1019 cm−3, mc = 1.8me, and Tc = 88
K for NEG123 and B = 0.9, ρs(0) = 1.6 × 1019 cm−3,
mc = 2me, and Tc = 86 K for Gd123, respectively. The
extrapolated values of Jc at T � 0 K are Jc(T � 0) �
29.94MA/cm2 and Jc(T � 0) � 23.29MA/cm2 (for the
compounds NEG123 and Gd123), respectively.

Finally, our fitting results within the extended d-wave
gap (with B = 0.92) to the experimental Jc(T ) data are
shown in Fig. 8 for d-wave superconducting nanowires
YBa2Cu3O7−δ (YBCO). Experimental data for YBCO
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Fig. 7 Experimental Jc(T ) data obtained by Cai et.
al. [32] (all symbols) for the mixed rare earth thin
films of (Nd,Eu,Gd)Ba2Cu3O7−δ (filled squares) and
GdBa2Cu3O7−δ (open squares), and the respective theoret-
ical fitting curves calculated with the extended d-wave gap
(solid line). Jc(T ) in (Nd,Eu,Gd)Ba2Cu3O7−δ is improved
in comparison with in GdBa2Cu3O7−δ

Fig. 8 Experimental Jc(T ) data obtained from [33]
(open symbols) for d-wave superconducting nanowires
YBa2Cu3O7−δ (with aa = 136 nm and bb = 50 nm) and
the corresponding theoretical fit curve calculated with the
extended d-wave gap (solid line)

obtained by Larsson et al. [33]. We use the following
sets of intrinsic materials parameters in order to obtain
the best fits: ρs(0) = 1.55 × 1019 cm−3, mc = 2.3me,
and Tc = 80 K, respectively. The extrapolated value of
Jc at T � 0 K is Jc(T � 0) � 16.94MA/cm2.

It is important to emphasize that although the tem-
perature dependence of some quantities can give an idea
of the gap structure in a cuprate superconductor, it is
important to take into account the role of impurity scat-
tering in these processes. In particular, impurity scat-
tering caused by chemical impurities or physical disor-
der can change the expected temperature dependence
of the magnetic penetration depth due to the effect
of scattering on the low energy density of states rela-
tive to the Fermi level. For clean d-wave symmetry the
change in the penetration depth as a function of tem-

perature is linear in temperature (Δλ(T ) ∝ T ), whereas
a quadratic temperature dependence (Δλ(T ) ∝ T 2) is
expected if the nodes are filled by impurity states. It is
well known that the so-called ”dirty d-wave” theory of
cuprate superconductivity is an extension of the origi-
nal field-theoretical formulation of disordered supercon-
ductors proposed by Abrikosov and Gor’kov [34,35].
According to Abrikosov–Gor’kov theory [34,35], the
transition between gap and gapless regimes was reg-
ulated by the concentration of pair-breaking impuri-
ties and the properties of such superconducting systems
were studied within the mean-field approximation. This
theory was applied for the first time to unconventional
superconductors by Gor’kov and Kalugin [36,37] and
by Ueda and Rice [38], and was also extended to arbi-
trary impurity phase shifts by Hirschfeld et al. [39] and
Schmitt-Rink et al. [40]. The influence of impurities on
the superfluid density of heavy-fermion superconduc-
tors was considered within the framework of the same
formalism by Gross et al. [41], and applied to d-wave
superconductors by Prohammer and Carbotte [42] and
Hirschfeld and Goldenfeld [43]. The latter work focused
on strong scattering in an attempt to explain the pene-
tration depth experiments of Zn-substituted YBCO by
Bonn and co-workers who proved the existence of d-
wave superconductivity in cuprates [44,45].

Over the past few years, Broun and collaborators
[46–48] have calculated superfluid density, optical con-
ductivity, residual heat capacity, Volovik effect, and
thermal conductivity within the framework of dirty d-
wave theory, and also compared with experiments on
the overdoped La2−xSrxCuO4 (LSCO). They showed
that the dirty d-wave theory agrees well with exper-
imental data in the overdoped region. In this regard,
they argue that the measurements on both the super-
fluid density and the optical conductivity of LSCO
films can be understood almost entirely within a dirty
d-wave scenario based on weak-coupling BCS theory
[46,47]. Specifically, the effects of impurity scatter-
ing were treated within the self-consistent t-matrix
approximation (SCTMA), in weak-coupling BCS the-
ory. According to the SCTMA, impurities are treated as
isotropic point scatters and are characterized by a scat-
tering strength, c, which is the cotangent of the s-wave
scattering phase shift. SCTMA calculations are usually
performed in the case of weak scattering, where c >> 1
(Born limit) and in the case of strong scattering, where
c = 0 (unitary limit). Both kinds of scattering will cause
pair-breaking and lead to Δλ/T 2 below some crossover
temperature T ∗, and a linear behaviour above this tem-
perature. The key parameter in the SCTMA analysis
is ΓN (0), the zero-temperature normal state scattering
rate. Disorder leads to a closing of the energy gap at a
reduced Tc, the reduction being set by the Abrikosov-
Gorkov formula [34,35]. It is important to note that Tc

only depends on ΓN = Tc0, while the form of ρs(T )
is heavily influenced by the impurity phase shift. Lee-
Hone et al. [46] found to reproduce both the magnitude
of the superfluid density and its (predominantly lin-
ear) dependence on temperature, provided that the vast
majority of impurity scatters were in the Born limit. It
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should be noted that the results of calculations in the
framework of the BCS dirty d-wave theory performed
by Broun and collaborators seem to explain many of the
qualitative and quantitative features of the superfluid
density and optical conductivity of overdoped LSCO
[46,47].

Due to particular purpose in the present work, the
effect of impurity scattering on the superfluid density,
as well as the mechanism of nanoscale electronic dis-
order in cuprate superconductors, has not been con-
sidered. We want to emphasize that a series of exper-
imental [7,8] and theoretical works [11] indicate that
the angular dependence of the gap in electron-doped
HTSCs significantly differs from the simple functional
form Δ = Δ0 cos(2ϕ) and has the nonmonotonic func-
tional form of the dx2−y2-wave superconducting gap
(with a maximum gap between nodal and anti-nodal
points on the Fermi surface). Although the tempera-
ture dependence of the anisotropic d-wave contribution
to the superfluid density is very close to the quadratic
(T 2) dependence (which is often observed in electron-
doped HTSs) in general, the T 2 behavior is attributed
to a dirty d-wave scenario and is explained by impu-
rity scattering of the carriers. However, it is difficult
to explain how an order parameter that changes sign
persists in the dirty limit, since any scattering centers
would act as pair breakers [49]. Thus, the results pre-
sented in this work should be attributed to pure super-
conductors. Consideration of superfluid density for a
dirty d-wave superconductor is done in Ref. [46].

5 Conclusions

In summary, we considered the question of the influ-
ence of pairing symmetry on the superconducting gap
Δ(T ) and the superfluid density ρs(T ), as well as on the
critical current density Jc(T ) in some superconduct-
ing cuprates. In this context, to calculate the super-
fluid density as well as Jc(T ) the temperature depen-
dence of the gap magnitude was determined from the
self-consistent gap equation of the gap depends on the
pairing symmetry. Based on this, we used generalized
BCS-like expressions to calculate Δ(T ) with the pairing
symmetry, as well as taking into account the extended
d-wave gap with the next angular harmonic. We used
these expressions for non-linear fitting of experimental
ρs and Jc data sets for d-wave superconductors in thin
films and nanowires.

Finally, we conclude that the above quantitative
analysis of ρs(T ) data shows that the Chandrasekhar
and Einzel approach with an extended d-wave gap
describes consistently both concave and T -linear behav-
ior of ρs at low temperatures, as well as non-linear
behavior at high temperatures. In this respect, the-
oretical calculations are in excellent agreement with
experimental data and show that the superfluid den-
sity and the critical current density of cuprates are well

described by an extended d-wave gap with higher angu-
lar harmonics.

Data Availability Statement The manuscript has asso-
ciated data in a data repository. [Authors’ comment: All
data included in this manuscript are available upon request
by contacting the corresponding author.]
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