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Introduction
“Education is rescuer
power of the world”
I. Karimov

Mathematics is playing an ever more important role in the physical an
biological sciences, provoking a blurring of boundaries between scientific
disciplines and a resurgence of interest in the modern as well as classical and
teaching, has led to the establishment of the series: Texts in Applied Mathematics
(TAM).

Solving many problems of natural science and technology that described
considering actions processes belong to Mathematics and Physical actions. For
example: Unknown functions and their derivatives when we know dependent on
connections of each functions then we may find solution of these functions. As like

connections we may call differential equations.

As a conclusion I say a lot of things about my topic of Qualification Paper.
During preparing it | have learned a lot of information depend on my topic. For
example: How to use first order equation in our real life. The role of it is large
place in natural sciences, physics and others. We may take examples belong to the

role differential equation in nature.

Example: Speed of linear motion actions, cooling down of thing, action of

bullet, reactive action and others.

Solving equation of science and technologies’ problems as well as general

actions in nature depend on a function which belonged to many variables.

My qualification paper is about on topic “Classification of second order

partial differential equation depended on two variables” consists of two chapter:



First chapter is about general information of differential equation. It is named
“General information about differential equations”. First chapter consist of 6
subtopics. They are general information about differential equations, types of
equation, first order differential equation general information, geometrical
interpretation of differential equation, the linear equation, high order differential
equation.

Second chapter is on topic “Second order partial differential equation depend
on two variables. It consists of 4 subtopics. They are transformation of variables,
characteristic lines and the classification, canonical form, Initial and boundary

conditions.



Chapter |
1.1General information about differential equations

Ordinary differential equations (ODEs) arise naturally whenever a rate of
change of some entity is known. This may be the rate of increase of a population,
the rate of change of velocity, or maybe even the rate at which soldiers die on a
battlefield. ODEs describe such changes of discrete entities. Respectively, this may
be the capita of a population, the velocity of a particle, or the size of a military
force.

Partial differential equations (PDEs) are analogous to ODEs in that they
involve rates of change; however, they differ in that they treat continuous media.
For example, the cloth could just as well be considered to be some kind of
continuous sheet. This approach would most likely lead to only 3 (maybe 4) partial
differential equations, which would represent the entire continuous sheet, instead
of a set of ODEs for each particle.

Many of the concepts of the previous section may be summarized in this
example. We won't deal with the PDE just yet. Consider heat flow along a laterally

insulated rod. Let's call the temperature of the rod«, and let v = u(z,t), where ¢

iIs time and z represents the position along the rod. To reemphasize, the
temperature depends both on time and position along the rod, which is exactly
what v = u(z,t) says.

Let's say that the rod has unitless length 1, and that its initial temperature
(again unitless) is known to be u(x,0) = sin(7x). This states the initial condition,
which depends on z.

Let's also say that the temperature is somehow fixed to 0 O at both ends of
the rod, at z = 0 and at =z = 1. This would result in «(0,?) = u(1,¢) = 0, which

specifies boundary conditions. The BCs state that for all ¢, at z = 0 and z =1

A PDE can be written to describe the situation. This and the IC/BCs form an
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initial boundary value problem (IBVP). The solution to this IBVP is (with a

physical constant taken to be 1):
w(z,t) = e " sin(nz)

Note that;
u(z,0) = 0 sin(7z) = sin(7zx)

u(l,t) = e " 'sin(r - 1)

It also satisfies the PDE, but (again) that'll come later.
This solution may be interpreted as a surface, it's shown in the figure below with x

going from 0 to 1, and t going from 0 to 0,5.




u(z,t) from ¢t =0 to t = 0,5 and = = 0 to = = 1. Surfaces may or may not be

the best way to convey information, and in this case a possibly better way to draw

the picture would be to graph u(z,t)as a curve at several different choices of ¢,

this is portrayed below.

/\u

t=0.1

X

u(z,t) in the domain of interest for various interesting values of ¢.

PDEs are extremely diverse, and their ICs and BCs can radically affect their
solution method. As a result, the best (read: easiest) way to learn is by looking at
many different problems and how they're solved.

1.2 Types of equation

We consider functions wu(z,t), defined by suitable partial differential

equations; in the case of first-order equations, these are represented by the relation

We should note, at this stage, that we shall limit our discussion to functions

of two variables, although some of the ideas go over to higher dimensions.
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We start with linear, homogeneous equations that contain only derivative

terms:

ou ou
Y A —0,
(M)(9 + (wy)ay

and then extend the ideas to quasi-linear equations:
a(ﬂ?,y,U)@ + b(m,y,U)@ =c z,y,u
ox Oy

linear in the two derivatives, but otherwise nonlinear and inhomogeneous. The
second-order equations that we discuss are linear in the highest derivatives, in the

form

0*u 0%u 0%u ou Ou
a(x,y)ﬁ—I—Qb(:zz,y)a 5 +c 3y p—d[a: y,u P 8y]

T yox Y

this is the semi-linear equation. (The equation in which a,b and ¢ also depend on

u and its two first partial derivatives is the quasi-linear equation, which will not be
discussed here, although many of the principles that we develop work equally well

in this case.) Examples of the three types mentioned above are

ou ou
g — =0
vt (z + y) 9y
x@ + u Ou = u;
oz 8y 7
0%u 0*u 5 0%u ou du)
e (z+ tal s = aut — 4y |,
Vo T uay T o T T e y[ay]

respectively.

1.3. First order differential equation general information

The right side of first order equations is might have been depend on z,y and

y' so that the general form of the first order differential equation is as following:
F(x,y,9") =0 (1.3.1)

Usually (1.3.1) equation is solved according to derivative form
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y' = flz.y) (1.3.2)

or the participation of differentials are tried to expressed as
M(z,y)dz + N(z,y)dy =0 (1.3.3)
It is easy to change the (1.3.2) form to (1.3.3) form or oppositely. Actually, if we

exchange ' with Z—y in (1.3.2) equation and both sides of it multiply to dz and if
X

we move all bounds to one side, we create as following:
This is (1.3.3) itself, here M(z,y) = f(x,y),N(z,y) = —1 oppositely, if we
exchange the first bound of equation to right side and suppose it as N(z,y) = 0

and if we divide second sides of equation into N(z,y)dz, we create

dy _ _M(z,y) the (1.3.2) form , here
dx N(z,y)

o) = M(z,y)
f(z,y) Nz.y)

so, the (1.3.2) and (1.3.3) form are completely equivalent; next time we will use

very position which is comfortable among them.
For distinguishing the functions, we need terms such as x = z,0r y = y, .
This is called initial term. It is expressed as following:
y(wy) = by (1.3.4)

The (1.3.4) equality is private solution of (1.3.2) equation.

Example:
2%y’ 4+ 3y = 0 is an equation as (1.3.1) form,

y = —3—32/ is like (1.3.2) equation,

T
z2dy + 3ydz = 0 equation is as (1.3.3).
Example: oy’ +y = 0
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One of the private solution of equation is zy = 6 = y = 9.
X
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Here the initial term is as following:

y(:l?o) =Yy : 9(3) =2 (xo =3, Yo — 2)

Description: If Cconstant is changed depend on y(z,) =y, and

function that dependent on C constant y = ¢(x,C') is called general solution.

So we say about first-order equations depend on two variables.

The fundamental idea that we exploit is best introduced via a couple of

elementary functions. First, let us suppose that we are given any function, f(x),

then it is obvious (and apparently of no significance) that f(z) is constant
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whenever z is constant; this is usually described by stating that f is constant on
lines z = constant. Expressed like this, we are simply re-interpreting the description

in terms of the conventional rectangular Cartesian coordinate system: y = f(z),
and then y = f(z)= constant when z=constant. To take this further, let us now
suppose that we have a function of two variables, f(z,y), but one that depends on
a specific combination of z and y .

f(z,y) = sin(z — ).
This function changes as x and y vary (independently), but it has the property that

f=constant on lines = — y? = constant; these lines are shown below.

o4

The function takes (in general different) constant values on each line. It is
quite apparent that this interpretation of the function provides more information
than simply to record that it is some function of the two variables. But we may take
this still further.

The conventional Cartesian coordinate axes, and the lines parallel to them,

are defined by lines x=constant and y= constant, which is usually regarded as

sufficient and appropriate for describing functions f(x, y). However, functions such

as our example above, sin(z — 4?), are better described by lines = — y?= constant
12



(perhaps together with either z=constant or y= constant). These should then be
the appropriate lines to use (in place of xz=constant, y=constant); these

‘coordinate’ lines are those reproduced in the figure above. The essence of our
approach to solving partial differential equations is to find these special coordinate

lines, usually called characteristic lines.

1.4 Geometrical Interpretation of differential equation
To investigate the geometrical content of a first-order, partial differential
equation, we begin with a general, quasi-linear equation. To investigate the
geometrical content of a first-order, partial differential equation, we begin with a

general, quasi-linear equation
a(z,y,wu, + b(z,y,w)u, — c(z,y,u) = 0. (1.5.1)
We assume that the possible solution of (1) in the form « = u(x,y) or in an
implicit form
f@,yu) = u(z,y) —u=0 (15.2)
represents a possible solution surface in (x,y,u) space. This is often called an

integral surface of the equation (1.5.1). At any point (z,y,u)on the solution
surface, the gradient vector Vf = (f.f.f,) = (u,u,—1) is normal to the

solution surface. Clearly, equation (1.5.1) can be written as the dot product of two
vectors
au, +bu, —c = (a,b,c)(u,u, —1) = 0. (1.5.3)
This clearly shows that the vector (a,b,c) must be a tangent vector of the
integral surface (1.5.2) at the point (z,y,u) and hence, it determines a direction

field called the the characteristic direction or Monge axis. This direction is of
fundamental importance in determining a solution of equation (1.5.1). To

summarize, we have shown that f(z,y,u) = w(x,y) —u = 0, as a surface in the

(z,y,u)-space, is a solution of (1.5.1) if and only if the direction vector field
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(a,b,c) lies in the tangent plane of the integral surface f(x,y,u) = 0 at each point
(z,y,u), where Vf = 0as shown in Figurel.

A curve in (z,y,u)-space, whose tangent at every point coincides with the
characteristic direction field (a,b,c), is called a characteristic curve. If the
parametric equations of this characteristic curve are

r=uz(t), y=ylt), u=ul), (1.5.4)

then the tangent vector to this curve is[%,%,%] which must be equal to

(a,b,c). Therefore, the system of ordinary differential equations of the

characteristic curve is given by

dz dy du
— = ' Y 9 - = b A 9 -
o = a@yu), - =bzyu), —

These are called the characteristic equations of the quasi-linear equation (1.5.1).

= c(z,y,c) (1.5.5)

Y

Nile
(1xtty—1) @b

0 -

X
Figurel. Tangent and normal vector fields of solution surface at a point(z,y, u).

In fact, there are only two independent ordinary differential equations in the
system (1.5.5); therefore, its solutions consist of a two-parameter family of curves

in (x,y,u)-space.
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The projection on » = 0 of a characteristic curve on the (z,t) -plane is

called a characteristic base curve or simply characteristic.
Equivalently, the characteristic equations (1.5.5) in the nonparametric form

are

dv _ dy _ du

(1.5.6)

a b c

The typical problem of solving equation (1.5.1) with a prescribed u on a given

plane curve C is equivalent to finding an integral surface in (z,y,u) space,

satisfying the equation (1.5.1) and containing the three-dimensional space curve G
defined by the values of « on C, which is the projection on « = 0 of G.

Remarkl. The above geometrical interpretation can be generalized for
higher-order partial differential equations. However, it is not easy to visualize
geometrical arguments that have been described for the case of three space
dimensions.

Remark2. The geometrical interpretation is more complicated for the case of
nonlinear partial differential equations, because the normal to possible solution
surfaces through a point do not lie in a plane.

We conclude this section by adding an important observation regarding the

nature of the characteristics in the (z,t)-plane. For a quasi-linear equation,

characteristics are determined by the first two equations in (1.5.5) with their slopes

dz a(z,y,u)

&y _ Yz (1.5.7)

If (1) is a linear equation, then a and b are independent of u, and the characteristics

of (1) are plane curves with slopes

dy _ b(z,y)
o o) (1.5.8)

By integrating this equation, we can determine the characteristics which represent

a one-parameter family of curves in the (z,t)-plane. However, if ¢ and b are

constant, the characteristics of equation (1.5.1) are straight lines.

15



We can use the geometrical interpretation of first-order, partial differential
equations and the properties of characteristic curves to develop a method for
finding the general solution of quasi-linear equations. This is usually referred to as

the method of characteristics due to Lagrange. This method of solution of quasi-
linear equations can be described by the following result.

Theorem 1. The general solution of a first-order, quasi-linear partial
differential equation

a(z,y, wu, + b(z,y,u) = c(z,y,u) (1.5.9)
IS
f(@,9) =0 (1.5.10)

where f is an arbitrary function of ¢(z,y,u) and (z,y,u), and » =constant = ¢,
and 1 = constant = ¢, are solution curves of the characteristic equations

d _dy _du 159
a b c

The solution curves defined by ¢(z,y,u) = ¢, and ¢(z,y,u) = c, are called
the families of characteristic curves of equation (1.5.9).
Proof. Since ¢(z,y,u) = c; and (z,y,u) = c, satisfy equations (1.5.6), these
equations must be compatible with the equation
dp = ¢,dv + ¢ dy + ¢, du = 0 (1.5.11)
This is equivalent to the equation
ap, + b, +cp, =0 (1.5.12)
Similarly, equation (6) is also compatible with
ay, + by, + ey, =0 (1.5.13)
We now solve (1.5.12), (1.5.13) for a,b and ¢ to obtain

e _ _dy __du (15.14)
ANdp)  O(gy)  O(d,9)
Ny,w)  Ouz)  I(z,y)

It has been shown earlier that f(¢,7) = 0 satisfies an equation similar to

16



0, y) , 0(y) _ 0(eY)
09 (o) ~ Bag) (1.5.15)

Substituting, (1.5.14) in (1.5.15), we find that f(x,%) = 0 is a solution of (1.5.9).

p

This completes the proof.

Note that an analytical method has been used to prove Theorem 1.
Alternatively, a geometrical argument can be used to prove this theorem. The
geometrical method of proof is left to the reader as an exercise. Many problems
in applied mathematics, science, and engineering involve partial differential
equations. We seldom try to find or discuss the properties of a solution to these
equations in its most general form. In most cases of interest, we deal with those
solutions of partial differential equations which satisfy certain supplementary
conditions. In the case of a first-order partial differential equation, we determine
the specific solution by formulating an initial-value problem or a Cauchy problem.

Theorem 2. (The Cauchy problem for a first-order partial differential

equation). Suppose that C is a given curve in the (z,y)-plane with its parametric

equations
L = I0<t)7 Yy = yo(t)7 (1.5.16)

where ¢ belongs to an interval I C R, and the derivatives z(¢)and y,(¢) are

piecewise continuous functions, such that (z})* + (y,)* = 0. Also, suppose that

u = u,(t) is a given function on the curve C'. Then, there exists a solution
u = u(z,y) of the equation

) =0 (1.5.17)

F(x7 Y, u, ux’ U’y

in a domain D of R?containing the curve C for all ¢ < I, and the solution

u(z,y) satisfies the given initial data, that is,

w(xy(t),y,(t)) = u,(t) (1.5.18)

for all values of ¢ € I.

17



In short, the Cauchy problem is to determine a solution of equation (1.5.17)

in a neighborhood of €, such that the solution w = u(z,y) takes a prescribed
value u,(t) on C'. The curve C is called the initial curve of the problem, and

u,(t)is called the initial data. Equation (1.5.18) is called the initial condition of the

problem.

The solution of the Cauchy problem also deals with such questions as the
conditions on the functions F,z,(t),y,(t) and u,(t) under which a solution exists
and is unique.

We next discuss a method for solving a Cauchy problem for the first order,

quasi-linear  equation (1.5.9). We first observe that geometrically
T = z4(t), y = yo(t), and uw = u,(¢) represent an initial curve G in (z,y,u)-
space. The curve C, on which the Cauchy data is prescribed, is the projection of G
on the (z,y)-plane. We now present a precise formulation of the Cauchy problem

for the first-order, quasi-linear equation (1.5.9).

Theorem 3 (The Cauchy Problem for a Quasi-linear Equation). Suppose

that z,(t),y,(¢), and u,(t) are continuously differentiable functions of t in a closed

interval, 0 <t <1, and that a, b and ¢ are functions of z,y, and « with
continuous first-order partial derivatives with respect to their arguments in some

domain D of (z,y,u) -space containing the initial curve
Gz =x4(t), yv=uy,(t), u=uy), (1.5.19)
where 0 <t <1 and satisfying the condition
' o(Balzo(t), vo(t), (1) — 2By (8), (1), (1) =0 (15.20)
Then there exists a unique solution v = u(z,y) of the quasi-linear equation (1.5.9)
in the neighborhood of C': z = z,(t),y = y,(t) , and the solution satisfies the
initial condition

uy(t) = u(zy(t),y,(t)), for 0 <t <1 (1.5.21)

18



Note: The condition (1.5.20) excludes the possibility that ¢ could be a
characteristic.
Example: Find the general solution of the first-order linear partial

differential equation.
Tu, + yu, = u (E})
The integral surfaces are the solutions of the characteristic equations

dr dy du
TN m
x Y u

This system of equations gives the integral surfaces
@:chlandwzﬁzcg,
T T

where C, and C, are arbitrary constants. This, the general solution of

(Dmf&ﬁ:a (E})
) = || (©))

where ¢ is an arbitrary function.

Example: Obtain the general solution of the linear Euler equation
Tu, + yu, = nu. (E})
The integral surfaces are the solutions of the characteristic equations

dr d du
—="== (B
x Y U

From these equations, we get

Yy U
_:Op _n:CQ7
T T

where C; and C, are arbitrary constants. Hence, the general solution of (1) is

f[gaﬂ] = 0. (E?ﬁ)

mgg”
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This can also be written as

or

wn-roft}
This shows that the solution u (x, y) is a homogeneous function of z and y of
degree n.

Example: Find the general solution of the linear equation

?u, + yguy = (z + y)u. (E})
The characteristic equations associated with (E?) are

der d du
S == (E3)
T y (z + y)u
From the first two of these equations, we find
1 1
——==0, E3
L=, =G (E3)

where C| is an arbitrary constant.

It follows from (E3) that

dr —dy  du
-y (@+yu

or

d(z —y) _du

T —y u

This gives

20



where C, is a constant. Furthermore, (E3) and (E3) also give

Ty 3
=2 =, E
U 3 ( 5)

where C, is a constant.

Thus, the general solution (E?) is given by

e (®})

where ¢ is an arbitrary function, or, equivalently,

x —
u(,y) = xyh[ y] (E7)
Ty
where A is an arbitrary function.
Example: 3 — 2z = 0
/ / dy
Yy —2r =y :2x:>d—:2x:>dy:2xdx;
h

2
x_+g =y=2"+C
2 2

fdyzfodxéfdyfoxdxiyzQ

General solution is expressed in system of cordinate as following:




So, general solution of the first order differential equation depended on one
variable usually is expressed curve in the plain. We may say that solution of the
equation consists of family of initial function (or family of curve).

We find C = 0 by the following initial term:
z, =09, =0
At this position y = z2. So, we try to paint graphic of y = z* in system of
coordinate in plain. y = z? is expressed parabola which passed through M(zy,y,)

point.

So, in geometry general solution of ¢’ —2z = 0 means that the curves
which dependent on C parameter. The private solution is consisted of curve which

passed through the point M, (z,y, ).

22



1.5 The linear equation
Here we consider the equation

0 0
mm£+mm£=a

Where the coefficients a and b will be assumed continuous throughout the
domain (D) where the solution, u(z,y) is to exist. To proceed, we seek a solution
that depends on z (say) and¢ = &(z,y); the solution is defined in 2-space so, in

general, we must transform into some corresponding 2-space (that is, using two

independent variables). The aim is to determine the function &(z,y) so that the

equation for » becomes sufficiently simple, allowing it to be integrated; indeed,
we hope that this results in a solution that depends — essentially — on only one

variable (namely, £). We note, in passing, that if we choose& = y, then we simply

recover the original problem (which does confirm that a transformation exists).

Let us write, for clarity,
u(z,y) = Ulz,&(z,y)]
then

ou OU 0&E0U ou 0£0U
— =24+ =2 and — = =>——;
Or Ox Ox 0§ oy 0Oy 0¢

this the equation for u (now U ) becomes
a(ﬂ?, y) (Ux + ngg) + b(ZU, y)éyUg = Oa
where we have used subscripts to denote the partial derivatives. Now we choose

&(z,y) such that a&, + b§, = 0 (and we note that is no more than the original

partial differential equation!) which leaves the equation for U as simply aU_ = 0,
and so provided a = 0 throughout D, then

U, =0orU = F(&) soon u(x,y) = F[f(x,y)},

23



where F' is an arbitrary function; this constitutes the general solution and confirms
that we may, indeed, seek a solution that depends on one (specially chosen)
variable. (It should be clear that arbitrary constants in the solution of ordinary
differential equations go over to arbitrary functions in the solution of partial

differential equations.) The function £(z,y) is determined completely when we

consider lines &= constant for then

dy dy £  blz,y)
+-—=¢ =0 or = = -2 = ,

dv. & alzy)

Note that, since we now know that we may describe the solution as

w= constant on certain lines, we may equally write directly that «= constant on

lines 3 = é, without the need to introduce ¢ at all. Nevertheless, as we shall
a

see, the introduction of characteristic lines is fundamental to any generalization of

this technique. So the integration of the ordinary differential equation ¢’ = M

a(z,y)
yields the characteristic lines £(z,y)= constant (this being the arbitrary constant of
integration), and then v = F(§) is the required general solution (which is
equivalent, of course, to = constant on lines &(x,y) = constant).

Example: Find the general solution of the partial differential equation
yu, + J:Quy =0.
The characteristic lines are given by the solution of the ordinary differential

equation

2
=2

1 1
y (y = 0) and so 53/2 = §$3 + constant,

or &(z,y) = 3y? — 227 = constant , which describes the characteristic lines. This
the general solution is
u(z,y) = F(3y* — 22°),

where F' is an arbitrary function.
24



Comment: We can check this solution directly (at least, if Fis a

differentiable function), for then u, = —62’F'(¢) and u, = 6yF'(¢), so that

yu, + 2*u, = —6ys’F' + 6yz”F" = 0, and observe that this does not require the

condition y = 0.
The next issue that we must address is how the arbitrary function, F is
determined in order to produce — we hope a unique solution of a particular

problem.

1.6 High order differential equation
F(y™ ym=0 =2 o/ 4 x)=0 is called high order differential

equation.

It is may be expressed as following:

g = fay, gy ).
Solving of high order differential equation is difficult than first order differential
equation. But high order differential equation often solves as first order differential

equation.

We may decrease its order as following:

v =)y =" g™ = " YY
Example:

Yy = f(z) = y" Y = ff(x)d:r: +C, ...
Example: Find the general solution of 3" — ' —y = 0 (1).

Solving: We knowy” — 4/ —y = (v — zy)’ = 0. So solving ofy’ — 2y = C (2)
is enough for us. 4’ — zy = C is linear equation. At this position we change y. We

use wwv instead of y .
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y = uv. (3)

So we need y’.

y'=u'v+ov'u (4)

We put (3) and (4) on (2)
u'v+ u(v'— zv) = C.

At this position we take v'— vz = 0 and find v

2 T
v'—vx:0:>@:vzc:>@:a:dx,lnvzx—iv:eQ
x v 2
z? xj 1:2
v'v=C=u'e2 =C=u'=Ce 2,u= g dr + C,
1 3
u=-20C %+02 +C,
IZ
= 1 |z
y=uv=-ce? - —50 §+C2 + O} (5)

N

X 3

(5) expression is general solution of (1).y = ez (— % C (x? + C2) + Cl)
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-2 -1 0 1 2
] . . . ] . . . | . . . ] . . . |

This figure is expressed one of solution of the equation.
Chapter |1
2.1. Transformation of variables

The general equation that we consider here is

a(z,y)u,,+ 2b(z,y)u,, + cz,y)v,, = dz,y,vu,,u,)
where a, b, ¢ and d are given; we have written partial derivatives using the
subscript notation. The basic procedure follows that which was so successful for
the wave equation, namely, to find a suitable transformation of variables. This will
necessitate the consideration of three cases, which leads to the essential
classification of these equations and then to the standard (canonical)
versions of the equation.

Although we eventually require the solution u(z,y), we represent this in the

form

U(ZIJ’, y) = U[f(%?/)ﬂ?(xay)]

for suitable choices of the new coordinates

&(x,y)=constant, n(x,y)= constant,
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which replace the conventional Cartesian set: z= constant , y = constant. This we

have, for example, which replace the conventional Cartesian set: x= constant,

y =constant. This we have, for example,

u, =&U; +nU, su, =U +nU,,
and then U, and Un exist provided that the Jacobian J = gmny — fy% = (0 (and
note that the choice & = z,n7 = y— which is no transformation at all, of course —
generates J = 1, so some &,n certainly do exist). [K.G.J. Jacobi, 1804-1851,

German mathematician, who did much to further the theory of elliptic functions.]

However, we also require second partial derivatives; for example, expressed as

differential operators, we have
82 8 0 8 0 8 0 8
- — +n — +n — +n
o7 [gf ¢ ] [51’ ¢ ][f ¢ ]

and we may choose to use either the first version, or the second, or a mixture of the

two. In particular, we elect to use the former when we differentiate £ and n_, but

the latter when we operate on 8% and g ; the result is

n

82 0 0?2 O? H?
—ﬁm nm—+£2—+ 26 1, + 02—
oz’ 23 &0 on?

2 2

and L . Our original equation now

there are corresponding results for
0x0y 0y>

takes the form
AUy +2BU, +CU, = D(f,n,U,Ug,U ),
where the coefficients on the left-hand side are given by
A= a€l + 2688, + &, ;B = am, +b(Em, +Em,) + €, ;
C = an; + 2bn,n, + cny,
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and D is a combination of 4 evaluated according to the transformation and the
first derivative terms that arise from the transformation used on the left-hand side.

The first observation that we make concerns the coefficients A, B and C'; in

particular, we form B2 — AC (which, as we shall see shortly, naturally arises — or

a version of it — in what we do later). This gives
2
B* - AC = [agxnx +0(&,n, +&mn,) + ngny] B
—(a&l + 2b€,&, + &) (an; + 20, + o)) =
2
= aX(En — &)+ 07| En, +En, T —4EEm,
+(E, — &) + acRE,Emn, — En) — &) +

+

+ab| 26,0, (Em, + §n,) — 280,m, — 268, |+
+be| 26,m, (€, + &, — 2620,m, — 2026,
=02 (&n, —Em, ) —acEn, —En,) = b —ac J?

where J = &n, — fy% Is the Jacobian introduced above. For the transformation

from (x, y) to (& ,n) to exist, we must have J = 0 , and then the sign of B> — AC is

identical to the sign of ¥> — ac (which uses the coefficients given in the original

equation). Thus, no matter what (valid) transformation we choose to use, the sign
of B> — AC is controlled by that of > — ac, and this suggests that this property

of b — ac is fundamental to the construction of a solution; the intimate connection

with the method of solution will be demonstrated in the next section.

2.2 Characteristic lines and the classification

Let us address the question of how to choose the new coordinates, ¢ and »;

lines &(x,y) = constant imply that on them

dy _ &
dz §y
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(and correspondingly %: e on lines n(z,y)=constant ). With these
4h

My

functions, we may write

2
dy dy
|2+
a[dx] [dx] ‘

and then both A and C are zero if we elect to use as the definition of the

2
Azfi a[%] —26[@]4-0 ,

and C' = 1, . o

characteristic lines

dy Y d dy 1 e
a[—y] —2b[d—y]—|—c:0:>—y:— b+ Vb2 —ac .
a

dx x dx
This if b2 > ac we have two real families of curves (defined by the solution of the
ordinary differential equation) and we may identify one family as &= constant and
the other as 5= constant: we have determined a choice of ¢ and n that simplifies

the original equation — it now becomes simply

2BU,, = D.

Further, it is clear that we have three cases: b> > ac, b> = ac and b> < ac , and

we should note that b* — ac will, in general, vary over the (z,y) -plane, so there

should be no expectation that it will remain single-signed. These three cases

provide the classification.

I. A =b% —ac > 0 (hyperbolic) usually solution of hyperbolic typical equation

is expressed as the following figures:
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This is the most straightforward case, as we have just seen. The characteristic lines,

&(x,y)= constant and n(x,y)= constant, are defined by the two (real) solutions of
the first-order equation

@:l b+Vb? —ac ;
dex a

this is referred to as the hyperbolic case, and the partial differential equation is then

said to be of hyperbolic type (a terminology that will be explained below).

Examplel.

Find the characteristic lines of the wave equation

U, —k*u,, =0 (k>0, constant).

Here we have a=1,b=0and ¢ = —k? ,sothat 4> —ac = k*> > 0 (and so the

equation is hyperbolic everywhere); thus the characteristic lines are given by

% TN TN AN y F kx =constant
X

I1. b> — ac = 0 (parabolic) usually solution of parabolic equation is expressed as

the following figures:
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We now have only one solution of the ordinary differential equation,

because we have repeated roots; we call this the parabolic case. To proceed, we

choose one characteristic, &say, which is defined by the solution of 3’ = b ; the
a

other is defined in any suitable way, provided that it is independent of the family
&(x,y)=constant i.e. it results in J = 0. Typically, the choice n = z is made,

although other choices may be convenient for particular equations.
Example 2.

Find the characteristic lines for the heat conduction (diffusion) equation
u, = ku,
(kK > 0, constant).

First write the equation as ku,, = u,, then we identify a = kb=c =0

which gives b? —ac = 0, so parabolic everywhere. This y' = 0; we may use
& = y=constant with n = z=constant, which is no transformation at all. This
original equation is already, as one of parabolic type, written in its simplest form.

Example: Find the characteristic equation zyu,_, + 4a:2yuxy + 4x3yuyy =

Solving: We know a = zy,b = 2z%y,c = 423y and % —
i

Q|+~
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I1l. 5> —ac <0 (elliptic) usually solution of elliptical typical equation is

expressed as the following figure:

This case presents us — or so it would appear — with a much more difficult
situation: the equation defining the characteristic lines is no longer real, so we

might hazard that no transformation exists in this case. It is clear that, because we

have the identity B> — AC = b% —ac J?> <0, then 4 and ¢ must have the

same sign and cannot be zero; this we choose to define the transformation to
produce A=C and B=0.

A=C=a &—n2 +26(58 —nmy) + (& —n) =0,
B =a&n, +b(n, +Em,) +cén,

Let us define the complex quantity A = £ + i, then we have A\ = £ + in, and

A, =§, T, and so
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A\l 4+ 20 + e} =
= a(§ — ) +26(§,E, —n,m,) + (& —n7) +
+ 2i(a,n, +b(En, +&mn,) +c€m,) =0
this lines A(z,y)= constant are exactly as before: solutions of

@:1 b+ iNac —b* .

der a
However, the solution of this differential equation is necessarily complex-

valued (called the elliptic case), so we write this as
Nz, y) = &(z,y) + in(z,y) = a + i3 =constant where o + i3 is a complex
constant. This choice of the new coordinates is given by &(z,y) = = constant and
n(z,y) = B=constant (both real!) i.e. we follow the procedure used in the

hyperbolic case, but here we apply the principle to the real and imaginary parts
separately. So there is a transformation, even though the characteristic lines,
defined by the ordinary differential equation, are certainly not real.

Example 3.

Find the characteristic lines for Laplace’s equation: u_ + u,, = 0. Herewe

have a =c =1 and b = 0, so > —ac = —1<0 elliptic everywhere, and then
y' = +i or y F iz= constant. This we may choose the transformation ¢ = y and
n = x (or vice versa); as in the previous example, this is no transformation — the

Laplace equation is already in its simplest form.
The simple results obtained in the last two examples lead naturally to the

notion of the canonical form.

2.3 Canonical form

The general equation, following a general transformation, is
AUy +2BU,, +CU, =D

and then the three cases give
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I. Hyperbolic A=C =0 :2BU, = D;
1. Parabolic (e.g. A =0,then B> —ac=0= B=0): CU, = D;
1. Elliptic (A = C,B = 0): AUy +U, )=D.

These constitute the canonical forms (and so we confirm that both

ku,, =u, and v, +u, =0, Examples 2 and 3, are already in this form). Here,

we use the word ‘canonical’ in the sense of ‘standard’ or ‘accepted’. The
terminology (hyperbolic, parabolic, elliptic) as applied to the classification of
partial differential equations, was introduced in 1889 by Paul du Bois-Reymond

(1831-1889, French mathematician) because he interpreted the underlying

2
a@ —2b@+c:0
dx dx

as being associated with the algebraic form

differential equation

ay? — 2bzy + cx? =terms linear in z and y .

Then a=c¢ =0 gives e.g. zy=constant, the rectangular hyperbola;
a=0b=0 gives e.g.z> = y, a parabola; b = 0 gives e.g. 2> + k*y*>= constant,
an ellipse (and a circle if a = ¢).The construction of the canonical form, via the
appropriate characteristic variables, will be explored in three further examples (and
then we will briefly examine a few specific and relevant applications of these
ideas).

Example 4.

Show that the equation yu, —4z°u, =0 is of hyperbolic type (for

x = 0,y = 0), find the characteristic variables and hence write the equation in

canonical form.

We have % —ac = 4z%? >0 for 2 = 0,y = 0, so everywhere else the

equation is of hyperbolic type. The characteristic lines, where the equation is
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4$2y2 _ :|:2_.I'

hyperbolic, are given by the solution of the equation ¢’ = + 5
Y Y

(and note that y = 0 must be avoided here, anyway) so that > F 2z = constant;
Y

weset £ = y® — 222 and n = ¢ + 222 , to give
2:4x 9_9 andﬁ:2y 24—2
O on ¢ Ay ¢ on

Then we obtain

2
3_:41,[2_2 Hﬁxz[ﬁ_ﬁ][ﬁ_ﬁ],

D> on 0§ on 0§\ On  O&
O ¢ on oc  om)log  on)

the original equation becomes, with u(z,y) = U(&,n) ,

2 2,2
4y (U, = U,) + 1627y (U, —2U,, + Ug) —
—82*(U, +U,) —162** (U, +2U, +U, ) =0

this
642%y*U,, = 4 y* =227 U, —4 y* +22° U,
oy 1 s 1 .
where we now write y° = 2 £+ n and z° = 1 n —& giving
2 7 =& U, =&, —nU,

which is the canonical form of the equation (because the only second-order

derivative is Uy, ).

Example 5.
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Show that the equationz’u,, + 2zyu,, +y°u, =0 is of parabolic type,

choose appropriate characteristic variables, write the equation in canonical form

and hence find the general solution.

Here we haveb® —ac = (zy)* —2°y* = 0, so the equation is parabolic

(everywhere).
One characteristic line is given by the solution of 3’ = 33_32; - (so,
T X
technically, we must avoid z = 0) i.e. xzy=constant ; this we introduce ¢ = zy

(slightly more convenient than zy) and choose n = x, to give

o 10 0 0 r 0

e - - _Z =

oxr yof On oy y2 OE

Then we obtain
8_2_[12+2][1g+g]. 0" :_;§_3[12+2]g.
yo& on)\yoc  On) 9zdy L2 OE lydE  On)og
P _mo PP
8y2 y33§ y4(9£27

and so the equation becomes, with u(z,y) = U(,n),

Oz?

1 2 1 T T
2
z|—=U.,.+-U, +U ]—i—wa[——U ——U ——U]
[yZ & y &n m y2 3 y3 133 y2 &n
2 2
Yy Yy

This simplifies to
U,, =0andso U = F(£) + nG(),

where F and G are arbitrary functions; thus the general solution is

u(x,y) = F[z] + $G[£].
Y Y

Example 6.
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Show that the equation

2y 1
:lur—i—— y2—{—332—|—41'4 U

+ 22+ 4yt u
y oy, T y

2
yu,, + 2zyu y

Y

(for x = 0,y = 0) is of elliptic type, find suitable characteristic variables and
hence write the equation in canonical form.

We have b? — ac = xy g y? (2% + 4z) = —4x'y? < 0 for
x = 0,y = 0, so elliptic and the characteristic lines are given by the solution of
the equation

_442 2
y = WENHY Lt

Y Y Y

.1 1 2 4
This §y2 = 5952 + igx?’ + constant or y* — 2> F z'gx?’:constant;

We choose ¢ = y> —2? and n = 23, although we could use just n = z:

the current choice will produce the simplest version of the canonical form —

indeed, we could even include the factor % (and we comment on this later). This

2=—2x2+3x22 and 222312,
ox o€ on oy o€
and then
2
a—:—2£+6x2—2x[—2x2+3x22]2
o> 23 on 73 dn ) ¢
0 0|0
+ 32| -2z — + 32" — | —
' [ Yo T an]an
2 2 2
with 0 = 2y —2xg+3az:22 9 and8—:2g+4y28—.
0y 0& on ) o€ 0y? 0& 0&

This the original equation, with u(x,y) = U(§,n), becomes
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2 3 3 4
Y —2U§—|—6xUn+4x U§£—12x U§n+9x Unn
2 2 4 2
+2zy —dayUg + 627yU,, + 27 +4a° 2U, +4y°U,
2y° 2 L o 2 4
= — 22U, +32°U, +— y° + 2" +42 29U, ,
T £ n y

which simplifies to give

4 2 _ _
why? OU, +16U, =0or 90U, + 16U, = 0.

nmm
This equation is essentially the classical Laplace equation (and therefore the

required canonical form); it can be written in precisely the conventional form if,

3

for example, we replace n by %7 the newn = %x , Which is exactly the

transformation suggested by the solution of the ordinary differential equation.

2.4 Initial and boundary conditions

Any differential equation will normally be provided with additional
constraints on the solution: the given boundary and/or initial data (as appropriate).
Indeed, any physical problem or practical application will almost always have such
auxiliary conditions. However, what forms these should take in order to produce a
well-posed problem for partial differential equations is not a trivial investigation.
We have already touched on this aspect for first order equations and for the wave
equation; we will now discuss these ideas a little further (although it is beyond the
scope of this text to produce any formal proofs of the various assertions of

uniqueness and existence)

I. Hyperbolic equations
The standard type of data — Cauchy data — is to be given both u and g—u on
n
some curve, G, which intersects the characteristic lines i.e. at no point is G parallel
to a characteristic line (so a characteristic line and G do not have a common

tangent at any point). Here, g—u Is the normal derivative on G (and this situation is
n
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exactly what we encountered for the wave equation: u(z,0) and %(:p,()) were

prescribed). Further, it is quite usual to seek solutions that move away (along
characteristic lines) from the curve G on one side only.
I1. Parabolic equations

It will be helpful, in this brief overview, to consider the canonical form of

the parabolic equation, written with 2 (distance) replacing &~ and ¢ (time) replacing

« ; the simplest such equation is «_, = u,. The characteristic lines, as we have

seen, appear as a repeated pair defined by % = 0 (see Example 2); interpreting
T

this in the form j—t we see that propagation on the characteristic lines
X

t =constant is at infinite speed, implying that the whole domain is affected
instantaneously (although often to an exponentially small degree well away from
the initial disturbance). Then we may have data on ¢t = 0 (initial data) and, if the
solution is defined in the domaint > 0, — oo < & < oo, no further information is
required (although a boundedness condition may need to be invoked the solution

decays as |:c| — 00). However, more often than not, the region is bounded, usually

by one or two lines z=constant, although any pair of curves in (z,t)-space will

suffice to describe the region where the solution is to exist; see the figure below.
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The solutionisin D, bounded by the curves G, G, and z;, <z <z, (ont = 0).

G, and G,, must be parallel to the characteristic lines i.e. no point of these curves
must have a slope parallel to the z - axis.

The data given on the curves, G, and G,, will be either » (the Dirichlet

problem) or g—u (the Neumann problem) or a mixture of the two, each on different
n

sections of G| and G, (the mixed problem).

I11. Elliptic equations
This class of problems is the easiest to describe in terms of boundary
conditions. First, initial data has no meaning here, for the two variables appear
symmetrically and there are no real characteristics, so there is no exceptional

variable such as ‘time’. Indeed, elliptic equations in two variables arise exclusively

in two spatial dimensions. Then we simply need to prescribe « (Dirichlet) or g—u
n

(Neumann), or a mix of these two, or a linear combination of them (Robin) on the
boundary of a region, D, in order to define a unique solution throughout D . (Note
that, by the very nature of Neumann data, the solution in this case will be known
only up to an arbitrary constant.)

Example: Explain type of the equation and write canonical form.

Uy, — Uy, = 0.
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Solving: we know ‘a = —2,b =0,c =1, b* —ac = = > 0,

So original equation is hyperbolic.

L7 SN [T :—i\/_ SN SN
dr a dx \/;
Cdy = iy = — [dy = + :>—y::|:2\/;:>y:|:2\/520
Nl KR s
_y—|—2x/_77—y—2«/_
1
u, = Ugix +U77771, = —\/—;Ug +ﬁUn; u, = Ug +U775
1 1
u =-—U,—-20, +U —|——U§—Un;uyy:U€£—|—2UW€—|—UW;

w8 &n m /x?’

Uy = Uy = Uge +2U,c + U,

1
—x[—U —2U, +U, +\/_Q§ nj):zwng:o

Zz
1 Un B U§
Uyy = Ugy :4Un£+ﬁ Q§ —Un}0:>2U&] :ﬁ
U — U5 ) _ )
U, = — is canonical form of the equation.
£—n
Example: Explain type of the equation the equation:

dyu,, +2(y — v, —u, =0

Solving: We know ‘a =4y, b=y —1, ¢—1, d = 0’ sowe can find A .
A=0b—ac= y—12—4y -1 =
=y +2y+1= y—|—12>0

If A>0, 4yu,, +2(y —u,, —u,, = 0 is hyperbolic type.
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the figure is expressed approximate graphic of the solution.
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Conclusion

By my qualification paper | tried to give general information about
differential equations. When | was writing the qualification paper, | had many
difficulties. Although, | have learnt a lot of things. During the process | used
internet information and references depend on my topic.

| wrote my qualification paper on topic “Classification of second order
partial differential equation depend on two variable” consists of two chapters:

First chapter is about general information of differential equation. It is
named “General information about ordinary differential equations”. First chapter
consist of 6 subtopics. They are general information about differential equations,
types of equation, first order differential equation general information, geometrical
interpretation of differential equation, the linear equation, high order differential
equation.

Second chapter is on topic “Second order partial differential equation depend
on two variables. It consists of 4 subtopics. They are Transformation of variables,
Characteristic lines and the classification, Canonical form, Initial and boundary

conditions.
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