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Introduction 

“Education is rescuer  

power of the world” 

I. Karimov 

  Mathematics is playing an ever more important role in the physical an  

biological sciences, provoking a blurring of boundaries between scientific 

disciplines and a resurgence of interest in the modern as well as classical and 

teaching, has led to the establishment of the series: Texts in Applied Mathematics 

(TAM).   

Solving many problems of natural science and technology that described 

considering actions processes belong to Mathematics and Physical actions. For 

example: Unknown functions and their derivatives when we know dependent on 

connections of each functions then we may find solution of these functions. As like 

connections we may call differential equations. 

As a conclusion I say a lot of things about my topic of Qualification Paper. 

During preparing it I have learned a lot of information depend on my topic.  For 

example: How to use first order equation in our real life. The role of it is large 

place in natural sciences, physics and others.  We may take examples belong to the 

role differential equation in nature. 

Example: Speed of linear motion actions, cooling down of thing, action of 

bullet, reactive action and others. 

Solving equation of science and technologies‟ problems as well as general 

actions in nature depend on a function which belonged to many variables. 

My qualification paper is about on topic “Classification of second order 

partial differential equation depended on two variables” consists of two chapter: 
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First chapter is about general information of differential equation. It is named 

“General information about differential equations”. First chapter consist of 6 

subtopics. They are general information about differential equations, types of 

equation, first order differential equation general information, geometrical 

interpretation of differential equation, the linear equation, high order differential 

equation. 

Second chapter is on topic “Second order partial differential equation depend 

on two variables. It consists of 4 subtopics. They are transformation of variables, 

characteristic lines and the classification, canonical form, Initial and boundary 

conditions. 
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Chapter I 

1.1 General information about differential equations 

Ordinary differential equations (ODEs) arise naturally whenever a rate of 

change of some entity is known. This may be the rate of increase of a population, 

the rate of change of velocity, or maybe even the rate at which soldiers die on a 

battlefield. ODEs describe such changes of discrete entities. Respectively, this may 

be the capita of a population, the velocity of a particle, or the size of a military 

force. 

Partial differential equations (PDEs) are analogous to ODEs in that they 

involve rates of change; however, they differ in that they treat continuous media. 

For example, the cloth could just as well be considered to be some kind of 

continuous sheet. This approach would most likely lead to only 3 (maybe 4) partial 

differential equations, which would represent the entire continuous sheet, instead 

of a set of ODEs for each particle. 

Many of the concepts of the previous section may be summarized in this 

example. We won't deal with the PDE just yet. Consider heat flow along a laterally 

insulated rod. Let's call the temperature of the rodu , and let ( , )u u x t , where t  

is time and x   represents the position along the rod. To reemphasize, the 

temperature depends both on time and position along the rod, which is exactly 

what ( , )u u x t  says. 

Let's say that the rod has unitless length 1 , and that its initial temperature 

(again unitless) is known to be ( ,0) sin( )u x x . This states the initial condition, 

which depends on x . 

Let's also say that the temperature is somehow fixed to 0  0 at both ends of 

the rod, at 0x  and at 1x . This would result in (0, ) (1, ) 0u t u t , which 

specifies boundary conditions. The BCs state that for all ,t u  at 0x  and 1x

 A PDE can be written to describe the situation. This and the IC/BCs form an 
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initial boundary value problem (IBVP). The solution to this IBVP is (with a 

physical constant taken to be 1): 

2
( , ) sin( )tu x t e x   

Note that; 

2

2

2

0( ,0) sin( ) sin( )

(0, ) sin( 0)

(1, ) sin( 1)

t

t

u x e x x

u t e

u t e

 

It also satisfies the PDE, but (again) that'll come later. 

This solution may be interpreted as a surface, it's shown in the figure below with x 

going from 0  to 1 , and t going from 0  to 0,5 . 
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( , )u x t  from 0t  to 0,5t  and 0x  to 1x . Surfaces may or may not be 

the best way to convey information, and in this case a possibly better way to draw 

the picture would be to graph ( , )u x t as a curve at several different choices of t , 

this is portrayed below. 

 ( , )u x t
 
in the domain of interest for various interesting values of t . 

PDEs are extremely diverse, and their ICs and BCs can radically affect their 

solution method. As a result, the best (read: easiest) way to learn is by looking at 

many different problems and how they're solved. 

1.2 Types of equation 

We consider functions ( , )u x t , defined by suitable partial differential 

equations; in the case of first-order equations, these are represented by the relation  

, , , , 0.
u u

f u x y
x y

  

We should note, at this stage, that we shall limit our discussion to functions 

of two variables, although some of the ideas go over to higher dimensions. 
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We start with linear, homogeneous equations that contain only derivative 

terms: 

( , ) ( , ) 0
u u

a x y b x y
x y

, 

and then extend the ideas to quasi-linear equations: 

( , , ) ( , , ) , ,
u u

a x y u b x y u c x y u
x y

  

linear in the two derivatives, but otherwise nonlinear and inhomogeneous. The 

second-order equations that we discuss are linear in the highest derivatives, in the 

form 

2 2 2

2 2
( , ) 2 ( , ) , , ,u, , ;

u u u u u
a x y b x y c x y d x y

y x x yx y
 

this is the semi-linear equation. (The equation in which ,a b  and c  also depend on 

u  and its two first partial derivatives is the quasi-linear equation, which will not be 

discussed here, although many of the principles that we develop work equally well 

in this case.) Examples of the three types mentioned above are 

22 2 2
2

2 2

( ) 0;

;

( ) ,

u u
x x y
x y
u u

x u u
x y

u u u u u
y x y x xu y

x y x yx y

  

respectively. 

 

1.3. First order differential equation general information 

The right side of first order equations is might have been depend on ,x y  and

y so that the general form of the first order differential equation is as following: 

 ( , , ) 0F x y y   (1.3.1) 

   Usually (1.3.1) equation is solved according to derivative form  
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 ( , )y f x y      (1.3.2) 

or the participation of differentials are tried to expressed as  

 ( , ) ( , ) 0M x y dx N x y dy    (1.3.3) 

It is easy to change the (1.3.2) form to (1.3.3) form or oppositely. Actually, if we 

exchange  y  with 
dy

dx
  in (1.3.2) equation and both sides of it multiply to dx  and if 

we move all bounds to one side, we create as following: 

( , ) 0f x y dx dy  . 

This is (1.3.3)  itself, here ( , ) ( , ), ( , ) 1M x y f x y N x y  oppositely, if we 

exchange the first bound of equation to right side and suppose it as ( , ) 0N x y   

and if we divide second sides of equation into ( , )N x y dx , we create 

( , )

( , )

dy M x y

dx N x y
  the (1.3.2) form , here  

( , )
( , ) .

( , )

M x y
f x y

N x y
  

so, the (1.3.2) and (1.3.3) form are completely equivalent; next time we will use 

very position which is comfortable among them. 

For distinguishing the functions, we need terms such as 0x x or 0y y  . 

This is called initial term. It is expressed as following: 

 0 0( )y x y   (1.3.4) 

The (1.3.4) equality is private solution of (1.3.2) equation. 

Example: 

2 3 0x y y  is an equation  as (1.3.1) form, 

2

3y
y

x
  is like (1.3.2) equation, 

2 3 0x dy ydx  equation is as  (1.3.3). 

 Example: 0xy y   
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ln ;

ln ln ln ln ln .

dy dy dx
x y xdy ydx
dx y x
dy dx dy dx

c
y x y x

c
y x c y

x

 

Here ln ln
c

y
x

  is general solution. 

One of the private solution of equation is 
6

6xy y
x

. 

6
.y
x

 

 

Here the initial term is as following: 

0 0 0 0( ) : (3) 2 ( 3, 2)y x y y x y   

Description: If C constant is changed depend on 0 0( )y x y  and  the 

function that dependent on C constant ( , )y x C  is called general solution. 

 So we say about first-order equations depend on two variables. 

The fundamental idea that we exploit is best introduced via a couple of 

elementary functions. First, let us suppose that we are given any function, ( )f x , 

then it is obvious (and apparently of no significance) that ( )f x  is constant 
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whenever x  is constant; this is usually described by stating that f  is constant on 

lines x constant. Expressed like this, we are simply re-interpreting the description 

in terms of the conventional rectangular Cartesian coordinate system: ( )y f x , 

and then ( )y f x constant when x constant. To take this further, let us now 

suppose that we have a function of two variables, ( , )f x y , but one that depends on 

a specific combination of x  and y . 

2( , ) sin( ).f x y x y   

This function changes as x  and y  vary (independently), but it has the property that 

f constant on lines 2x y  constant; these lines are shown below. 

  

The function takes (in general different) constant values on each line. It is 

quite apparent that this interpretation of the function provides more information 

than simply to record that it is some function of the two variables. But we may take 

this still further. 

The conventional Cartesian coordinate axes, and the lines parallel to them, 

are defined by lines xconstant and y constant, which is usually regarded as 

sufficient and appropriate for describing functions ( , )f x y . However, functions such 

as our example above, 2sin( )x y , are better described by lines 2x y constant 
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(perhaps together with either x constant or y constant). These should then be 

the appropriate lines to use (in place of x constant, y constant); these 

„coordinate‟ lines are those reproduced in the figure above. The essence of our 

approach to solving partial differential equations is to find these special coordinate 

lines, usually called characteristic lines. 

 

1.4 Geometrical Interpretation of differential equation 

To investigate the geometrical content of a first-order, partial differential 

equation, we begin with a general, quasi-linear equation. To investigate the 

geometrical content of a first-order, partial differential equation, we begin with a 

general, quasi-linear equation 

( , , ) ( , , ) ( , , ) 0.x ya x y u u b x y u u c x y u  (1.5.1) 

We assume that the possible solution of (1) in the form ( , )u u x y  or in an 

implicit form 

( , , ) ( , ) 0f x y u u x y u       (1.5.2) 

represents a possible solution surface in ( , , )x y u  space. This is often called an 

integral surface of the equation (1.5.1). At any point ( , , )x y u on the solution 

surface, the gradient vector ( , , ) ( , , 1)x y u x yf f f f u u  is normal to the 

solution surface. Clearly, equation (1.5.1) can be written as the dot product of two 

vectors          

( , , )( 1) 0.x y x yau bu c a b c u u   (1.5.3) 

This clearly shows that the vector ( ,b,c)a  must be a tangent vector of the 

integral surface (1.5.2) at the point ( , , )x y u   and hence, it determines a direction 

field called the the characteristic direction or Monge axis. This direction is of 

fundamental importance in determining a solution of equation (1.5.1). To 

summarize, we have shown that ( , , ) ( , ) 0f x y u u x y u , as a surface in the 

( , , )x y u -space, is a solution of (1.5.1) if and only if the direction vector field 
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( , , )a b c  lies in the tangent plane of the integral surface ( , , ) 0f x y u  at each point 

( , , )x y u , where 0f as shown in Figure1. 

A curve in ( , , )x y u -space, whose tangent at every point coincides with the 

characteristic direction field ( , , )a b c , is called a characteristic curve. If the 

parametric equations of this characteristic curve are 

( ), ( ), ( ),x x t y y t u u t    (1.5.4) 

then the tangent vector to this curve is , ,
dx dy du

dt dt dt
 which must be equal to 

( , , ).a b c  Therefore, the system of ordinary differential equations of the 

characteristic curve is given by 

( , , ), ( , , ), ( , , ) (1.5.5)
dx dy du

a x y u b x y u c x y c
dt dt dt

 

These are called the characteristic equations of the quasi-linear equation (1.5.1). 

 

    Figure1. Tangent and normal vector fields of solution surface at a point( , , )x y u . 

In fact, there are only two independent ordinary differential equations in the 

system (1.5.5); therefore, its solutions consist of a two-parameter family of curves 

in ( , , )x y u -space. 
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The projection on 0u  of a characteristic curve on the ( , )x t  -plane is 

called a characteristic base curve or simply characteristic. 

Equivalently, the characteristic equations (1.5.5) in the nonparametric form 

are 

 .
dx dy du

a b c
                                  (1.5.6) 

The typical problem of solving equation (1.5.1) with a prescribed u on a given 

plane curve C is equivalent to finding an integral surface in ( , , )x y u  space, 

satisfying the equation (1.5.1) and containing the three-dimensional space curve G  

defined by the values of u  on C , which is the projection on 0u  of G . 

Remark1. The above geometrical interpretation can be generalized for 

higher-order partial differential equations. However, it is not easy to visualize 

geometrical arguments that have been described for the case of three space 

dimensions. 

Remark2. The geometrical interpretation is more complicated for the case of 

nonlinear partial differential equations, because the normal to possible solution 

surfaces through a point do not lie in a plane.  

We conclude this section by adding an important observation regarding the 

nature of the characteristics in the ( , )x t -plane. For a quasi-linear equation, 

characteristics are determined by the first two equations in (1.5.5) with their slopes 

( , , )
.

( , , )

dy b x y u

dx a x y u
                    (1.5.7) 

If (1) is a linear equation, then a and b are independent of u, and the characteristics 

of (1) are plane curves with slopes 

( , )

( , )

dy b x y

dx a x y                           

 (1.5.8) 

By integrating this equation, we can determine the characteristics which represent 

a one-parameter family of curves in the ( , )x t -plane. However, if a  and b  are 

constant, the characteristics of equation (1.5.1) are straight lines. 
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We can use the geometrical interpretation of first-order, partial differential 

equations and the properties of characteristic curves to develop a method for 

finding the general solution of quasi-linear equations. This is usually referred to as 

the method of characteristics due to Lagrange. This method of solution of quasi-

linear equations can be described by the following result. 

Theorem 1. The general solution of a first-order, quasi-linear partial 

differential equation 

( , , ) ( , , ) ( , , )xa x y u u b x y u c x y u
     

(1.5.9) 

is                                   

       
( , ) 0f                                     (1.5.10) 

where f is an arbitrary function of ( , , )x y u  and ( , , )x y u , and  =constant = 1c

and = constant = 2c  are solution curves of the characteristic equations                                        

.
dx dy du

a b c                                
(1.5.6) 

The solution curves defined by 1( , , )x y u c  and 2( , , ) cx y u  are called 

the families of characteristic curves of equation (1.5.9). 

      Proof. Since 1( , , ) cx y u  and 2( , , ) cx y u   satisfy equations (1.5.6), these 

equations must be compatible with the equation 

               
0x y ud dx dy du

         
 (1.5.11) 

This is equivalent to the equation 

                           
0x y ua b c                                  (1.5.12) 

Similarly, equation (6) is also compatible with 

                                  
0x y ua b c                                      (1.5.13) 

We now solve (1.5.12), (1.5.13) for a ,b   and c  to obtain 

                              

.
( , ) ( , ) ( , )
( , ) ( . ) ( , )

dx dy du

y u u x x y

                                        (1.5.14) 

It has been shown earlier that ( , ) 0f   satisfies an equation similar to 



17 
 

                  

( , ) ( , ) ( , )
.

( , ) ( , ) ( , )
p q
y z z x x y                      

(1.5.15) 

Substituting, (1.5.14) in (1.5.15), we find that ( , ) 0f  is a solution of (1.5.9). 

This completes the proof. 

Note that an analytical method has been used to prove Theorem 1. 

Alternatively, a geometrical argument can be used to prove this theorem. The 

geometrical method of proof is left to the reader as an exercise.    Many problems 

in applied mathematics, science, and engineering involve partial differential 

equations. We seldom try to find or discuss the properties of a solution to these 

equations in its most general form. In most cases of interest, we deal with those 

solutions of partial differential equations which satisfy certain supplementary 

conditions. In the case of a first-order partial differential equation, we determine 

the specific solution by formulating an initial-value problem or a Cauchy problem. 

             Theorem 2. (The Cauchy problem for a first-order partial differential 

equation). Suppose that C is a given curve in the ( , )x y -plane with its parametric 

equations 

                        0 0( ), (t),x x t y y                         (1.5.16) 

where t  belongs to an interval I R , and the derivatives 0( )x t and 0( )y t  are 

piecewise continuous functions, such that 2 2
0 0( ) ( ) 0.x y  Also, suppose that 

0( )u u t  is a given function on the curve C . Then, there exists a solution 

( , )u u x y  of the equation 

                     
( , , , , ) 0x yF x y u u u                               (1.5.17) 

in a domain D  of 2R containing the curve C  for all  t I , and the solution 

( , )u x y  satisfies the given initial data, that is, 

                         0 0 0( ( ), ( )) ( )u x t y t u t                                 (1.5.18) 

for all values of .t I  
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  In short, the Cauchy problem is to determine a solution of equation (1.5.17) 

in a neighborhood of C , such that the solution ( , )u u x y  takes a prescribed 

value 0( )u t  on C . The curve C  is called the initial curve of the problem, and 

0( )u t is called the initial data. Equation (1.5.18) is called the initial condition of the 

problem. 

The solution of the Cauchy problem also deals with such questions as the 

conditions on the functions 0 0, ( ), ( )F x t y t  and 0( )u t  under which a solution exists 

and is unique. 

We next discuss a method for solving a Cauchy problem for the first order, 

quasi-linear equation (1.5.9). We first observe that geometrically 

0 0( ), ( ),x x t y y t  and 0( )u u t  represent an initial curve G   in ( , , )x y u -

space. The curve C , on which the Cauchy data is prescribed, is the projection of G   

on the ( , )x y -plane. We now present a precise formulation of the Cauchy problem 

for the first-order, quasi-linear equation (1.5.9). 

Theorem 3 (The Cauchy Problem for a Quasi-linear Equation). Suppose 

that 0 0( ), ( )x t y t , and 0( )u t  are continuously differentiable functions of t in a closed 

interval, 0 1t , and that a , b  and c  are functions of ,x y , and u  with 

continuous first-order partial derivatives with respect to their arguments in some 

domain D  of ( , , )x y u  -space containing the initial curve 

   0 0 0G : ( ), ( ), ( ),x x t y y t u u t                (1.5.19) 

where 0 1t  and satisfying the condition 

       0 0 0 0 0 0 0 0' ( ) ( ( ), ( ), ( )) ' ( ) ( ( ), ( ), ( )) 0y t a x t y t u t x t b x t y t u t        (1.5.20) 

Then there exists a unique solution ( , )u u x y  of the quasi-linear equation (1.5.9) 

in the neighborhood of 0 0: ( ), ( )C x x t y y t  , and the solution satisfies the 

initial condition 

                 0 0 0( ) ( ( ), ( )),u t u x t y t  for 0 1t                    (1.5.21) 



19 
 

Note: The condition (1.5.20) excludes the possibility that C  could be a 

characteristic. 

Example: Find the general solution of the first-order linear partial 

differential equation. 

1
1(E )x yxu yu u   

The integral surfaces are the solutions of the characteristic equations 

1
2. (E )

dx dy du

x y u
  

This system of equations gives the integral surfaces 

1
y
C

x
 and 2,

u
C

x
  

where С1  and С2  are arbitrary constants. This, the general solution of 

(1) is    1
3, 0, (E )

y u
f
x x

  

1
4( , ) , (E )

y
u x y xg

x
 

where g   is an arbitrary function. 

Example: Obtain the general solution of the linear Euler equation 

2
1. (E )x yxu yu nu   

The integral surfaces are the solutions of the characteristic equations 

2
2. (E )

dx dy du

x y u
 

From these equations, we get 

1 2, ,
n

y u
C C

x x
  

where С1  and С2  are arbitrary constants. Hence, the general solution of (1) is 

2
3, 0. (E )

n

y u
f
x x
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This can also be written as 

n

u y
g
xx

  

or 

                           2
4( , ) . (E )n y

u x y x g
x

   

This shows that the solution u (x, y) is a homogeneous function of x  and y  of 

degree n . 

Example: Find the general solution of the linear equation 

2 2 3
1( ) . (E )x yx u y u x y u   

The characteristic equations associated with 3
1(E )  are 

3
22 2

. (E )
( )

dx dy du

x y ux y
  

From the first two of these equations, we find 

3
1 3

1 1
, (E )C

x y
  

where 1C  is an arbitrary constant. 

It follows from 3
3(E )  that 

2 2 ( )

dx dy du

x y ux y
  

 or 

( )
.

d x y du

x y u
  

 

This gives 

3
2 4, (E )

x y
C

u
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where 2C  is a constant. Furthermore, 3
3(E )  and 3

4(E )  also give 

3
3 5, (E )

xy
C

u
  

where 3C  is a constant. 

Thus, the general solution 3
1(E )  is given by 

3
6, 0, (E )

xy x y
f
u u

  

where g  is an arbitrary function, or, equivalently, 

3
7( , ) , (E )

x y
u x y xy h

xy
  

where h  is an arbitrary function. 

   

Example: 2 0y x   

2
2

2 2 2 2 ;

2 2 2
2 2

dy
y x y x x dy xdx

dx

x C
dy xdx dy xdx y y x C

  

    General solution is expressed in system of сordinate as following: 

 

                                          y 

 

 

 

 

                              O                                    x 
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So, general solution of the first order differential equation depended on one 

variable usually is expressed curve in the plain. We may say that solution of the 

equation consists of family of initial function (or family of curve). 

We find  0C  by the following initial term: 

0 00, 0x y  

At this position 2y x . So, we try to paint graphic of 2y x  in system of 

coordinate in plain. 2y x  is expressed parabola which passed through 0 0( , )M x y  

point. 

  

 

  

So, in geometry general solution of 2 0y x  means that the curves 

which dependent on C parameter. The private solution is consisted of curve which 

passed through the point 0 0 0( )M x y . 
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1.5 The linear equation 

Here we consider the equation 

( , ) ( , ) 0.
u u

a x y b x y
x y

  

Where the coefficients a and b will be assumed continuous throughout the 

domain ( )D  where the solution, ( , )u x y  is to exist. To proceed, we seek a solution 

that depends on x  (say) and ( , )x y ; the solution is defined in 2-space so, in 

general, we must transform into some corresponding 2-space (that is, using two 

independent variables). The aim is to determine the function ( , )x y  so that the 

equation for u  becomes sufficiently simple, allowing it to be integrated; indeed, 

we hope that this results in a solution that depends – essentially – on only one 

variable (namely, ). We note, in passing, that if we choose y , then we simply 

recover the original problem (which does confirm that a transformation exists). 

Let us write, for clarity, 

( , ) , ( , )u x y U x x y   

then 

u U U

x x x
  and ;

u U

y y
  

this the equation for u  (now U ) becomes 

( , )( ) ( , ) 0,x x ya x y U U b x y U   

where we have used subscripts to denote the partial derivatives. Now we choose 

( , )x y  such that 0x ya b   (and we note that is no more than the original 

partial differential equation!) which leaves the equation for U  as simply 0xaU , 

and so provided 0a  throughout D , then 

0xU  or ( )U F   so on ( , ) ( , ) ,u x y F x y   
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where F  is an arbitrary function; this constitutes the general solution and confirms 

that we may, indeed, seek a solution that depends on one (specially chosen) 

variable. (It should be clear that arbitrary constants in the solution of ordinary 

differential equations go over to arbitrary functions in the solution of partial 

differential equations.) The function ( , )x y  is determined completely when we 

consider lines constant for then 

0x y
dy

dx
  or 

( , )
.

( , )
x

y

dy b x y

dx a x y
  

Note that, since we now know that we may describe the solution as  

u constant on certain lines, we may equally write directly that u constant on 

lines  
b

y
a

, without the need to introduce  at all. Nevertheless, as we shall 

see, the introduction of characteristic lines is fundamental to any generalization of 

this technique. So the integration of the ordinary differential equation 
( , )

( , )

b x y
y

a x y
  

yields the characteristic lines ( , )x y constant (this being the arbitrary constant of 

integration), and then ( )u F  is the required general solution (which is 

equivalent, of course, to u constant on lines ( , )x y  constant). 

Example: Find the general solution of the partial differential equation

2 0x yyu x u  . 

The characteristic lines are given by the solution of the ordinary differential 

equation  

2

' ( 0)
x

y y
y

  and so 2 31 1

2 3
y x  constant,  

or 2 3( , ) 3 2x y y x constant , which describes the characteristic lines. This 

the general solution is 

2 3( , ) (3 2 ),u x y F y x   

where F  is an arbitrary function. 
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Comment: We can check this solution directly (at least, if F is a 

differentiable function), for then 26 ( )xu x F   and 6 ( )yu yF , so that 

2 2 26 6 0x yyu x u yx F yx F , and observe that this does not require the 

condition 0y . 

  The next issue that we must address is how the arbitrary function, F  is 

determined in order to produce – we hope a unique solution of a particular 

problem. 

  

1.6 High order differential equation 

( ) ( 1) ( 2)( , , ,..., , , ) 0n n nF y y y y y x  is called high order differential 

equation. 

It is may be expressed as following:  

( ) ( 2) ( 1)( , , ,..., , )n n ny f x y y y y . 

Solving of high order differential equation is difficult than first order differential 

equation. But high order differential equation often solves as first order differential 

equation.  

We may decrease its order as following:

( ) ( 1)( ) , ( ) ,..., ( )n ny y y y y y  

Example: 

( ) ( 1)
1( ) ( ) , ....n ny f x y f x dx C   

Example: Find the general solution of   0y xy y  (1). 

Solving: We know ( ) 0y y x y y xy .  So solving ofy xy C  (2) 

is enough for us. y xy C  is linear equation. At this position we change y. We 

use uv  instead of y . 
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.y uv  (3) 

So we need  y . 

' ' ' .y u v v u  (4) 

 

We put (3) and (4) on (2)   

' ( ' ) .u v u v xv C   

At this position we take ' 0v vx  and find v   

2

2 2

2

2
2

2
2 2

1

3

2 1

3
2

2 1

' 0 , ln
2

' ' ' , ,
2

1

2 3

1
. (5)

2 3

x

x x

x

dv dv x
v vx vx xdx v v e

dx v
x

u v C u e C u Ce u C dx C

x
u C C C

x
y uv e C C C

 

 (5) expression is general solution of (1).   
  

 ( 
 

 
 (

  

 
   )    ) 
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This figure is expressed one of solution of the equation. 

Chapter II 

2.1. Transformation of variables 

The general equation that we consider here is 

( , )u 2 ( , ) ( , ) ( , , , , )xx xy yy x ya x y b x y u c x y u d x y u u u   

where a, b, c and d are given; we have written partial derivatives using the 

subscript notation. The basic procedure follows that which was so successful for 

the wave equation, namely, to find a suitable transformation of variables. This will 

necessitate the consideration of three cases, which leads to the essential 

classification of these equations and then to the standard (canonical) 

versions of the equation. 

Although we eventually require the solution ( , )u x y , we represent this in the 

form 

( , ) ( , ), ( , )u x y U x y x y    

for suitable choices of the new coordinates 

( , )x y =constant, ( , )x y = constant, 
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which replace the conventional Cartesian set: x constant , y constant. This we 

have, for example, which replace the conventional Cartesian set: x constant,      

y  =constant. This we have, for example, 

; ,x x x y y yu U U u U U   

and then U  and U  exist provided that the Jacobian 0x y y xJ   (and 

note that the choice ,x y – which is no transformation at all, of course –

generates J = 1, so some ,  certainly do exist). [K.G.J. Jacobi, 1804-1851, 

German mathematician, who did much to further the theory of elliptic functions.] 

However, we also require second partial derivatives; for example, expressed as 

differential operators, we have  

2

2 x x x x x xxx
 

and we may choose to use either the first version, or the second, or a mixture of the 

two. In particular, we elect to use the former when we differentiate x and x , but 

the latter when we operate on  and  ; the result is 

2 2 2 2
2 2

2 2 2
2 ;xx xx x x x x

x x
  

there are corresponding results for 
2

x y
  and  

2

2y
. Our original equation now 

takes the form 

2 ( , , , , ),AU BU CU D U U U   

where the coefficients on the left-hand side are given by 

2

2 2

2 ; ( ) ;

2 ,
x x y x x x x y y x y y

x x y y

A a b c B a b c

C a b c
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and D  is a combination of d  evaluated according to the transformation and the 

first derivative terms that arise from the transformation used on the left-hand side. 

The first observation that we make concerns the coefficients ,A B  and C ; in 

particular, we form 2B AC   (which, as we shall see shortly, naturally arises – or 

a version of it – in what we do later). This gives 

22

2 2 2 2

22 2 2 2 2 2

2 2 2 2 2 2 2 2 2

( )

( 2 )( 2 )

( ) 4

( ) (2 )

x x x y y x y y

x x y y x x y y

x x x x x y y x x y x y

y y y y x y x y x y y x

B AC a b c

a b c a b c

a b

c ac

  

2 2

2 2

2 2 2 2 2

2 ( ) 2 2

2 ( 2 2

( ) ( )

x x x y y x x x y x x y

y y x y y x y x y y x y

x y y x x y y x

ab

bc

b ac b ac J

  

where x y y xJ   is the Jacobian introduced above. For the transformation 

from (x, y) to (,) to exist, we must have J 0 , and then the sign of 2B AC  is 

identical to the sign of 2b ac   (which uses the coefficients given in the original 

equation). Thus, no matter what (valid) transformation we choose to use, the sign 

of 2B AC   is controlled by that of 2b ac , and this suggests that this property 

of 2b ac  is fundamental to the construction of a solution; the intimate connection 

with the method of solution will be demonstrated in the next section. 

 

2.2 Characteristic lines and the classification 

Let us address the question of how to choose the new coordinates,   and ;   

lines ( , )x y = constant imply that on them 

x

y

dy

dx
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(and correspondingly x

y

dy

dx
  on lines ( , )x y constant ). With these 

functions, we may write  

2
2 2y
dy dy

A a b c
dx dx

 and 

2
2 2 ,y
dy dy

C a b c
dx dx

  

and then both A  and C  are zero if we elect to use as the definition of the 

characteristic lines 

 

2
21

2 0 .
dy dy dy

a b c b b ac
dx dx dx a

  

This if 2b ac  we have two real families of curves (defined by the solution of the 

ordinary differential equation) and we may identify one family as constant and 

the other as constant: we have determined a choice of  and  that simplifies 

the original equation – it now becomes simply 

2 .BU D   

Further, it is clear that we have three cases: 2b ac , 2b ac   and 2b ac   , and 

we should note that 2b ac   will, in general, vary over the ( , )x y -plane, so there 

should be  no expectation that it will remain single-signed. These three cases 

provide the classification. 

I. 2 0b ac  (hyperbolic) usually solution of hyperbolic typical equation 

is expressed as the following figures: 
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This is the most straightforward case, as we have just seen. The characteristic lines, 

( , )x y constant and ( , )x y constant, are defined by the two (real) solutions of 

the first-order equation 

21
;

dy
b b ac

dx a
  

this is referred to as the hyperbolic case, and the partial differential equation is then 

said to be of hyperbolic type (a terminology that will be explained below). 

 

Example1. 

   Find the characteristic lines of the wave equation  

2 0xx yyu k u   (k 0 , constant). 

Here we have a 1, b 0and 2c k   , so that 2 2 0b ac k   (and so the 

equation is hyperbolic everywhere); thus the characteristic lines are given by 

2dy
k k y kx

dx
constant  

II. 2 0b ac  (parabolic) usually solution of parabolic equation is expressed as 

the following figures: 
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We now have only one solution of the ordinary differential equation, 

because we have repeated roots; we call this the parabolic case. To proceed, we 

choose one characteristic, say, which is defined by the solution of 
b

y
a
=  ; the 

other is defined in any suitable way, provided that it is independent of the family 

( , )x y constant i.e. it results in 0J . Typically, the choice x  is made, 

although other choices may be convenient for particular equations. 

Example 2. 

Find the characteristic lines for the heat conduction (diffusion) equation  

y xxu ku  

( 0k , constant). 

First write the equation as xx yku u , then we identify , 0a k b c  

which gives 2 0b ac , so parabolic everywhere. This 0y ; we may use 

y constant with x constant, which is no transformation at all. This 

original equation is already, as one of parabolic type, written in its simplest form. 

Example: Find the characteristic equation 2 34 4xx xy yyxyu x yu x yu u   

Solving: We know 2 3, 2 , 4a xy b x y c x y  and 
1dy

dx a
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III. 2 0b ac  (elliptic)  usually solution of elliptical typical equation is 

expressed as the following figure: 

 

 

This case presents us – or so it would appear – with a much more difficult 

situation: the equation defining the characteristic lines is no longer real, so we 

might hazard that no transformation exists in this case. It is clear that, because we 

have the identity  2 2 2 0B AC b ac J  , then A  and C  must have the 

same sign and cannot be zero; this we choose to define the transformation to 

produce A C  and 0B  . 

2 2 2 22 ( ) ( ) 0 ,

( ) c
x x x y x y y

x x x y y x y y

A C a b y c

B a b
  

Let us define the complex quantity i , then we have x x xi  and 

y y yi   and so  
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2 2

2 2 2 2

2

( ) 2 ( ) ( )

2 ( ( ) ) 0

x x y y

x x x y x y y y

x x x y y x y y

a b c

a b c

i a b c

  

this lines ( , )x y constant are exactly as before: solutions of 

21
.

dy
b i ac b

dx a
  

However, the solution of this differential equation is necessarily complex-

valued (called the elliptic case), so we write this as 

( , ) ( , ) ( , )x y x y i x y i  constant  where i  is a complex 

constant. This choice of the new coordinates is given by ( , )x y constant and 

( , )x y constant (both real!) i.e. we follow the procedure used in the 

hyperbolic case, but here we apply the principle to the real and imaginary parts 

separately. So there is a transformation, even though the characteristic lines, 

defined by the ordinary differential equation, are certainly not real. 

Example 3. 

Find the characteristic lines for Laplace‟s equation: 0xx yyu u . Here we 

have 1a c  and 0b , so 2 <1 0b ac   elliptic everywhere, and then 

y i  or y ix constant. This we may choose the transformation y  and 

x (or vice versa); as in the previous example, this is no transformation – the 

Laplace equation is already in its simplest form. 

The simple results obtained in the last two examples lead naturally to the 

notion of the canonical form. 

 

2.3 Canonical form 

The general equation, following a general transformation, is 

2AU BU CU D   

and then the three cases give 
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I. Hyperbolic 0A C : 2 ;BU D   

II. Parabolic (e.g. 0A , then 2 0 0B ac B  ): ;CU D   

III. Elliptic ( , 0A C B ): ( )AU U D . 

These constitute the canonical forms (and so we confirm that both 

yy xku u   and 0xx yyu u , Examples 2 and 3, are already in this form). Here, 

we use the word „canonical‟ in the sense of „standard‟ or „accepted‟. The 

terminology (hyperbolic, parabolic, elliptic) as applied to the classification of 

partial differential equations, was introduced in 1889 by Paul du Bois-Reymond 

(1831-1889, French mathematician) because he interpreted the underlying 

differential equation 

2

2 0
dy dy

a b c
dx dx

  

as being associated with the algebraic form 

2 22ay bxy cx  terms linear in x  and y . 

Then 0a c  gives e.g. xy constant, the rectangular hyperbola; 

0a b  gives e.g. 2x y , a parabola; 0b  gives e.g. 2 2 2x k y constant, 

an ellipse (and a circle if a c ).The construction of the canonical form, via the 

appropriate characteristic variables, will be explored in three further examples (and 

then we will briefly examine a few specific and relevant applications of these 

ideas). 

Example 4. 

 Show that the equation 2 24 0xx yyy u x u   is of hyperbolic type (for 

0, 0x y ), find the characteristic variables and hence write the equation in 

canonical form. 

   We have  2 2 24 0b ac x y  for 0, 0x y , so everywhere else the 

equation is of hyperbolic type. The characteristic lines, where the equation is 
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hyperbolic, are given by the solution of the equation  
2 2

2

4 2x y x
y

yy
=   

(and note that 0y  must be avoided here, anyway) so that 2 22y x constant; 

we set 2 22y x   and 2 22y x   , to give 

4x
x

  and 2 .y
y

  

Then we obtain 

2
2

2
4 16x x

x
 , 

2
2

2
2 4 ;y

x
  

the original equation becomes, with ( , ) U( , )u x y  , 

2 2 2

2 2 2

4 ( ) 16 ( 2 )

8 ( ) 16 ( 2 ) 0

y U U x y U U U

x U U x y U U U
  

this 

2 2 2 2 2 264 4 2 4 2x y U y x U y x U  

where we now write 2
1

2
y   and 2

1

4
x  giving 

2 22 ,U U U   

which is the canonical form of the equation (because the only second-order 

derivative is U ). 

Example 5. 
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Show that the equation 2 22 0xx xy yyx u xyu y u   is of parabolic type, 

choose appropriate characteristic variables, write the equation in canonical form 

and hence find the general solution. 

Here we have 2 2 2 2( ) 0b ac xy x y , so the equation is parabolic 

(everywhere). 

One characteristic line is given by the solution of 
2

xy y
y

xx
  (so, 

technically, we must avoid 0x ) i.e. xy constant ; this we introduce xy  

(slightly more convenient than xy ) and choose x , to give 

1

x y
  and 

2
.

x

y y
  

Then we obtain 

2 2

2 2 2

2 2 2

2 3 4 2

1 1 1 1
; ;

2
,

x

y y x y yx y y
x x

y y y

  

and so the equation becomes, with ( , ) ( , ),u x y U   

2
2 2 3 2

2
2

3 4

1 2 1
2

2
0.

x x
x U U U xy U U U

yy y y y
x x

y U U
y y

  

This simplifies to 

0U  and so ( ) ( ),U F G   

where F  and G  are arbitrary functions; thus the general solution is 

( , ) .
x x

u x y F xG
y y

  

Example 6. 
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Show that the equation

2
2 2 4 2 2 42 1

2 4 4xx xy yy x y
y

y u xyu x y u u y x x u
x y

 

(for 0, 0x y ) is of elliptic type, find suitable characteristic variables and 

hence write the equation in canonical form. 

We have 
22 2 2 4 4 2( 4 ) 4 0b ac xy y x x x y   for 

0, 0x y , so elliptic and the characteristic lines are given by the solution of 

the equation 

4 2 2

2

4
2 .

xy x y x x
y i

y yy
  

This  2 2 31 1 2

2 2 3
y x i x  constant or 2 2 34

3
y x i x =constant; 

We choose 2 2y x  and 3x , although we could use just x ; 

the current choice will produce the simplest version of the canonical form – 

indeed, we could even include the factor 
4

3
 (and we comment on this later). This  

22 3x x
x

 and  2 ,y
y

 

and then 

2
2

2

2 2

2 6 2 2 3

3 2 3

x x x x
x

x x x

  

with  
2

22 2 3y x x
x y

  and 
2 2

2
2
2 4 .y

y
  

This the original equation, with ( , ) ( , )u x y U , becomes 
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2 3 3 4

2 2 4 2

2
2 2 2 4

2 6 4 12 9

2 4 6 4 2 4

2 1
2 3 4 2 ,

y U xU x U x U x U

xy xyU x yU x x U y U

y
xU x U y x x yU

x y

  

which simplifies to give 

4 2 9 16 0x y U U  or 9 16 0.U U
 

This equation is essentially the classical Laplace equation (and therefore the 

required canonical form); it can be written in precisely the conventional form if, 

for example, we replace  by  
3

4
 the new 34

3
x  , which is exactly the 

transformation suggested by the solution of the ordinary differential equation. 

  

2.4 Initial and boundary conditions 

Any differential equation will normally be provided with additional 

constraints on the solution: the given boundary and/or initial data (as appropriate). 

Indeed, any physical problem or practical application will almost always have such 

auxiliary conditions. However, what forms these should take in order to produce a 

well-posed problem for partial differential equations is not a trivial investigation.  

We have already touched on this aspect for first order equations and for the wave 

equation; we will now discuss these ideas a little further (although it is beyond the 

scope of this text to produce any formal proofs of the various assertions of 

uniqueness and existence) 

 

I. Hyperbolic equations 

The standard type of data – Cauchy data – is to be given both u and 
u

n
 on 

some curve, G, which intersects the characteristic lines i.e. at no point is G parallel 

to a characteristic line (so a characteristic line and G do not have a common 

tangent at any point). Here, 
u

n
 is the normal derivative on G (and this situation is 
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exactly what we encountered for the wave equation: ( ,0)u x  and ( ,0)
u
x
t

 were 

prescribed). Further, it is quite usual to seek solutions that move away (along 

characteristic lines) from the curve G on one side only. 

II. Parabolic equations 

It will be helpful, in this brief overview, to consider the canonical form of 

the parabolic equation, written with x  (distance) replacing h  and t (time) replacing

x ; the simplest such equation is xx tu u . The characteristic lines, as we have 

seen, appear as a repeated pair defined by 0
dt

dx
 (see Example 2); interpreting 

this in the form 
dt

dx
, we see that propagation on the characteristic lines                            

t constant is at infinite speed, implying that the whole domain is affected 

instantaneously (although often to an exponentially small degree well away from 

the initial disturbance). Then we may have data on 0t  (initial data) and, if the 

solution is defined in the domain 0, ,t x  no further information is 

required (although a boundedness condition may need to be invoked the solution 

decays as x ). However, more often than not, the region is bounded, usually 

by one or two lines x =constant, although any pair of curves in ( , t)x -space will 

suffice to describe the region where the solution is to exist; see the figure below. 

    

 

 

 

 

 

 

 

         t         G1                                             G2 
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                                                                         D 

 

                                                                                                                                                                                              

O                 x1                               x2                         x        

 

 

 

The solution is in D , bounded by the curves 1 2,G G  and 1 2x x x   (on 0t ). 

1G  and 2G , must be parallel to the characteristic lines i.e. no point of these curves 

must have a slope parallel to the  x  - axis. 

   The data given on the curves, 1G  and 2G , will be either u   (the Dirichlet 

problem) or 
u

n
 (the Neumann problem) or a mixture of the two, each on different 

sections of 1G  and 2G  (the mixed problem). 

III. Elliptic equations 

This class of problems is the easiest to describe in terms of boundary 

conditions. First, initial data has no meaning here, for the two variables  appear 

symmetrically and there are no real characteristics, so there is no exceptional 

variable such as „time‟. Indeed, elliptic equations in two variables arise exclusively 

in two spatial dimensions. Then we simply need to prescribe u  (Dirichlet) or 
u

n
  

(Neumann), or a mix of these two, or a linear combination of them (Robin) on the 

boundary of a region, D , in order to define a unique solution throughout D . (Note 

that, by the very nature of Neumann data, the solution in this case will be known 

only up to an arbitrary constant.) 

Example: Explain type of the equation and write canonical form. 

0.yy xxu u   
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Solving: we know „ , 0, 1,a x b c ‟ 2 0b ac x ,
  

So  original equation is hyperbolic.              
 

2

3

3

1 1 1

1 1
2 2 0

2 , 2 ;

1 1
; ;

1 1
2 ; 2 ;

2

1 1
2

x x x y

xx yy

yy xx

dy dy
b b ac x

dx a x dx x

dy dx dy y x y x
x x

y x y x

u U U U U u U U
x x

u U U U U U u U U U
x x

u u U U U

x U U U U
x x

4 0

1
4 0 2yy xx

U U

U U
u u U U U U

x   

2
U U

U  
 
is canonical form of the equation. 

Example: Explain type of the equation the equation:

4 2( 1) 0xx xy yyyu y u u   

Solving: We know „ 4 , 1, 1, 0a y b y c d ‟ so we can find  . 

22

22

1 4 1

2 1 1 0

b ac y y

y y y
 

If 0  , 4 2( 1) 0xx xy yyyu y u u  is hyperbolic type.  
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the figure is expressed approximate graphic of the solution. 
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Conclusion 

By my qualification paper I tried to give general information about 

differential equations. When I was writing the qualification paper, I had many 

difficulties. Although, I have learnt a lot of things. During the process I used 

internet information and references depend on my topic.  

I wrote my qualification paper on topic “Classification of second order 

partial differential equation depend on two variable” consists of two chapters: 

First chapter is about general information of differential equation. It is 

named “General information about ordinary differential equations”. First chapter 

consist of 6 subtopics. They are general information about differential equations, 

types of equation, first order differential equation general information, geometrical 

interpretation of differential equation, the linear equation, high order differential 

equation. 

Second chapter is on topic “Second order partial differential equation depend 

on two variables. It consists of 4 subtopics. They are Transformation of variables, 

Characteristic lines and the classification, Canonical form, Initial and boundary 

conditions. 
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