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KIRISH (falsafa doktori (PhD) dissertatsiyasi annotatsiyasi) 

Dissertatsiya mavzusining dolzarbligi va ahamiyati. Jahonda olib 

borilayotgan koʻplab ilmiy va amaliy tadqiqotlarda Shturm-Liuvill operatori uchun 

qoʻyilgan toʻgʻri va teskari spektral masalalarni tadqiq qilishga alohida ahamiyat 

berilmoqda. Hozirgi kunda rivojlangan mamlakatlarda spektral analizning toʻgʻri va 

teskari masalalari zamonaviy matematik fizikaning evolyutsion tenglamalari 

yechimlarini topish va yechimning sinfini aniqlashda muhim ahamiyatga ega 

boʻlmoqda. Bundan tashqari bu masalalar radiotexnika, nochiziqli optika, kvant 

mexanikasi, amorf jismlarning kristallik xossalarini modellashtirishda muhim oʻrin 

tutmoqda. Shturm-Liuvill operatori uchun sochilish nazariyasining va davriy 

koeffitsientli Shturm-Liuvill operatoriga qoʻyilgan teskari spektral masalalari 

usullaridan foydalanib Korteveg-de Friz (KdF) tenglamasi uchun qoʻyilgan Koshi 

masalasini yechish algoritmi nochiziqli muhitlarda ultraqisqa impulslarning 

tarqalishi, nochiziqli elektrodinamikaning ayrim masalalari oʻrganishda, jumladan 

yuqorida aytib oʻtilgan sohalarda muhim ahamiyatga ega boʻlmoqda. 

Jahonda tez kamayuvchi va davriy funksiyalar sinflarida qoʻshimcha hadlarga 

ega nochiziqli manfiy tartibli KdF tenglamasiga qoʻyilgan Koshi masalasining 

yechimini topish algoritmini tuzish boʻyicha tadqiqotlarga ustuvor ahamiyat 

berilmoqda va keng tadqiq etilmoqda. Bu borada spektral analiz usullari plazma 

fizikasi, nochiziqli optika, kvant mexanikasi, gidrodinamika sohalarida keng 

qoʻllanilmoqda. Shu sababli, tez kamayuvchi va davriy funksiyalar sinflarida manfiy 

tartibli KdF tenglamasi bilan bir qatorda, yuklangan hadli nochiziqli manfiy tartibli 

KdF tenglamasining yechimini mavjudligi, ular oʻzgarmas amplitudali solitonsimon 

va tekis yaqinlashuvchi funksional qator koʻrinishida boʻlishini koʻrsatishga imkon 

beruvchi tadqiqotlarni rivojlantirish dolzarb vazifalardan hisoblanmoqda. 

Respublikamizda matematik fizikaning nochiziqli evolyutsion tenglamalarining 

yechimlarini Shturm-Liuvill operatoriga qoʻyilgan toʻgʻri va teskari spektral 

masalalar usulidan foydalanib aniqlash hamda topilgan yechimlarni amaliyotda 

qoʻllash boʻyicha keng koʻlamli chora-tadbirlar amalga oshirilmoqda. Xususan, 

birinchi tartibli oddiy differensial tenglamalar sistemasi spektral nazariyasi 

masalalarini oʻrganishga eʼtibor kuchaydi hamda sochilish nazariyasining to‘g‘ri va 

teskari masalalari usullaridan foydalanib zamonaviy matematik fizikaning manfiy 

tartibli nochiziqli evolyutsion tenglamalarining soliton yechimlarini qurish boʻyicha 

muhim natijalarga erishildi. Matematika sohasidagi ilmiy tadqiqot ishlari ko‘lamini 

kengaytirish, ularning natijadorligi va amaliy ahamiyatini oshirish, matematika va 

uning tatbiqlari bo‘yicha tadqiqotlarni rivojlantirish sohaning asosiy vazifalari etib 

belgilangan
1
. Ushbu vazifalarni amalga oshirishda, xususan zamonaviy matematik 

fizikaning nochiziqli evolyutsion tenglamalarni integrallashda muhim ahamiyat kasb 

etuvchi differensial operatorlar spektral nazariyasini muhim ilmiy ahamiyatga ega.  

Oʻzbekiston Respublikasi Prezidentining 2020-yil 29-oktabrdagi PF-6097-son 

“Ilm-fanni 2030-yilgacha rivojlantirish Konsepsiyasini tasdiqlash to‘g‘risida”gi va 

2022-yil 28-yanvardagi PF-60-son “2022-2026-yillarga mo‘ljallangan Yangi 

                                                           
1
 O‘zbekiston Respublikasi Prezidentining 2020 yil 7 maydagi “Matematika sohasidagi ta’lim sifatini oshirish va ilmiy-

tadqiqotlarni rivojlantirish chora-tadbirlari to‘g‘risida”gi PQ-4708-son qarori.  
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O‘zbekistonning taraqqiyot strategiyasi to‘g‘risida”gi Farmonlari, 2019-yil 9-iyuldagi 

PQ-4387-son “Matematika ta’limi va fanlarini yanada rivoylantirishni davlat 

tomonidan qoʻllab-quvvatlash, shuningdek, Oʻzbekiston Respublikasi Fanlar 

Akmademiyaning V.I. Romanoviskiy nomidagi Matematika instituti faoliyatini 

tubdan takomillashtirish chora tadbirlari toʻgʻrisida”gi qarorlari hamda mazkur 

faoliyatga tegishli boshqa normativ-huquqiy hujjatlarda belgilangan vazifalarni 

amalga oshirishda ushbu dissertatsiya tadqiqoti muayyan darajada xizmat qiladi. 

Tadqiqotning respublika fan va texnologiyalari rivojlantirishning ustuvor 

yoʻnalishlariga muvofiqligi. Ushbu tadqiqot Oʻzbekiston Respublikasida fan va 

texnikani rivojlantirishning IV. “Matematika, mexanika va informatika” ustuvor 

yoʻnalishi doirasida bajarilgan. 

Muammoning oʻrganilganlik darajasi. Chiziqli Shturm-Liuvill operatorini 

sochilish nazariyasini berilganlari orqali tiklashga teskari masala deyiladi. 

Shturm-Liuvill operatori uchun qoʻyilgan teskari spekral masala sochilish 

nazariyasining berilganlari orqali ilk bor L.D. Faddeev keyinchalik V.A. Marchenko, 

B.M. Levitan va boshqa olimlar tomonidan yechilgan. Sochilish nazariyasining 

teskari masalasini yechish usuli ilk bor 1967-yilda Gardner, Grin, Kruskal, Miuralar 

tomonidan klassik KdF tenglamasini integrallash jarayoniga qoʻllaniladi. Shu bilan 

bir qatorda uning N  solitonli yechimini ham topdilar. 1968-yilda Laks sochilish 

nazariyasining teskari masalasi usuli umumiy xarakterga ega ekanligini koʻrsatdi va 

KdF tenglamasining yuqori tartibli analoglarini topishga muvaffaq boʻldi. 

Navbatdagi dolzarb muammolardan yana biri bu klassik KdF tenglamasini 

davriy funksiyalar sinfida integrallash, boshqacha aytganda KdF tenglamasini soliton 

yechimlarining davriy analoglarini topishdan iborat. 1974-yilda S.P. Novikov KdF 

tenglamasi va uning yuqori tartibli umumlashmalarining har bir statsionar davriy 

yechimi chekli zonali potensial boʻlishi va u kvazidavriy funksiyalardan iborat 

ekanligini koʻrsatib berdi. Shu yilning oʻzida A.R. Its, V.B. Matveev va 

B.A. Dubrovin, S.P. Novikovlar chekli zonali davriy va kvazidavriy funksiyalar 

sinfida klassik KdF tenglamasining integrallanuvchi boʻlishi Xill operatoriga 

qoʻyilgan teskari spektral masalalar usulidan foydalanib koʻrsatilgan. Shu bilan bir 

qatorda klassik KdF tenglamasining chekli zonali yechimi uchun oshkor formula 

topilgan. 

Davriy funksiyalar sinfini ikkita qism toʻplamga ajratish maqsadga muvofiq 

ya’ni chekli zonali davriy funksiyalar sinfi va cheksiz zonali davriy funksiyalar sinfi. 

Cheksiz zonali davriy potensialga misol ilk bor 1922-yilda E.L. Ince tomonidan 

kiritilgan boʻlib bu holatda Xill operatorining spektridagi barcha lakunalarning ochiq 

boʻlishi isbotlangan. Yuqorida keltirilgan mulohazalardan koʻrinadiki chekli zonali 

davriy potensiallar sinfi ham cheksiz zonali davriy potensiallar sinfi ham boʻsh 

toʻplam emas. Shuning uchun davriy cheksiz zonali funksiyalar sinfida nochiziqli 

evolyutsion tenglamalarga qoʻyilgan Koshi masalasining yechimga egaligini 

koʻrsatish muommosi zamonaviy matematik fizikaning dolzarb (aktual) 

masalalaridan biri hisoblanadi. Davriy funksiyalar sinfida manbali KdF 

tenglamasining integrallanuvchiligi ilk bor 2010-yilda A.B. Xasanov, 

A.B. Yaxshimuratovlarning maqolasida isbotlangan. Davriy funksiyalar sinfida 
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manbali manfiy tartibli KdF tenglamasining integrallanuvchiligi ilk bor 2022-yilda 

G.O‘. O‘razboyev va M.M. Xasanovlarning maqolasida isbotlangan. 

Dissertatsiya tadqiqotining dissertatsiya tugallangan oliy oʻquv yurti yoki 

ilmiy-tadqiqot muassasasining ilmiy tadqiqot rejalari bilan bogʻliqligi. 

Dissertatsiya Abu Rayhon Beruniy nomidagi Urganch davlat universiteti ilmiy-

tadqiqot ishlari rejasiga muoviffiq “Differensial operatorlar spektral nazariyasining 

nochiziqli evolyutsion tenglamalarga tadbiqlari” nomli ilmiy-tadqiqot ishlari rejasi 

doirasida amalga oshirilgan. 

Tadqiqotning maqsadi. Shturm-Liuvill va Dirak operatorlariga qoʻyilgan 

teskari spektral masalalarini yechish usullaridan foydalanib manfiy tartibli KdF 

tenglamasini va modifitsirlangan Korteveg-de Friz (mKdF) tenglamalarini tez 

kamayuvchi va davriy funksiyalar sinflarida integrallashdan iborat. 

Tadqiqotning vazifalari: 

manfiy tartibli KdF tenglamasi uchun qo‘yilgan Koshi masalasini tez 

kamayuvchi funksiyalar sinfida sochilish nazariyasining teskari masalalari usulidan 

foydalanib yechish; 

tez kamayuvchi funksiyalar sinfida Shturm-Liuvill operatoriga qoʻyilgan 

sochilish nazariyasining teskari masalasini yechish usulidan foydalanib moslangan 

manbali manfiy tartibli KdF tenglamasini integrallanuvchi ekanligini isbotlash 

Dirak operatori uchun teskari spektral masalani yechish usulidan foydalangan 

holda, yuklangan hadli manfiy tartibli mKdF tenglamasiga qoʻyilgan Koshi 

masalasini yechimga egaligini davriy funksiyalar sinfida isbotlash; 

Dirak operatoriga qoʻyilgan teskari spektral masalani yechish usulidan 

foydalanib, manfiy tartibli integral manbali mKdF tenglamasini davriy funksiyalar 

sinfida integrallanuvchanligini isbotlash. 

Tadqiqot obyekti manfiy tartibli KdF va mKdF tenglamalarini teskari spektral 

masalalar usullari yordamida integrallash masalalari tadqiq qilishdan iborat. 

Tadqiqot predmeti Shturm-Liuvill va Dirak operatorlari uchun sochilish 

nazariyasining teskari spektral masalalari usullarini manfiy tartibli nochiziqli 

evolyutsion tenglamalarni integrallash jarayoniga tatbiq etishdan iborat. 

Tadqiqot usullari. Dissertatsiya ishida matematik fizika, matematik analiz, 

funksional analiz, differensial operatorlarning spektral nazariyasi, kompleks 

oʻzgaruvchili funksiyalar nazariyasi va differensial tenglamalarni yechish usullari 

qoʻllanilgan. 

Tadqiqotning ilmiy yangiligi quyidagilardan iborat: 

manfiy tartibli KdF tenglamasiga qo‘yilgan Koshi masalasini tez kamayuvchi 

funksiyalar sinfida Shturm-Liuvill operatori uchun sochilish nazariyasining teskari 

masalasi usulidan foydalanib integrallanuvchi ekanligi isbotlangan; 

moslangan manbali manfiy tartibli KdF tenglamasi tez kamayuvchi funksiyalar 

sinfida Shturm-Liuvill operatoriga qoʻyilgan sochilish nazariyasining teskari 

masalasini yechish usulidan foydalanib yechilgan 

manfiy tartibli yuklangan hadli mKdF tenglamasining integrallanuvchanligi 

Dirak operatoriga qoʻyilgan teskari spektral masalasini yechish usulidan foydalanib 

davriy funksiyalar sinfida isbotlangan; 
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manfiy tartibli integral manbali mKdF tenglamasining integrallanuvchanligi 

Dirak operatoriga qoʻyilgan teskari spektral masalasini yechish usulidan foydalanib 

davriy funksiyalar sinfida isbotlangan; 

Tadqiqotning amaliy natijalari quyidagilardan iborat: 

tez kamayuvchi va davriy funksiyalar sinflarida manfiy tartibli KdF va mKdF 

tenglamalariga qoʻyilgan Koshi masalalarini yechish algoritmidan foydalanib 

moslangan manbali, integral manbali va yuklangan hadli mKdF tenglamasi uchun 

qoʻyilgan Koshi masalasining solitonsimon va davriy yechimlari aniq koʻrinishi 

topilgan; 

manfiy tartibli KdF tenglamasini tez kamayuvchi va davriy funksiyalar 

sinflarida integrallash algoritmidan foydalangan holda soliton va davriy 

toʻlqinlarning tarqalish tezliklari oʻzgarishlari va amplitudasi oʻzgarmay qolishini 

aniqlashga tadbiq qilingan. 

Tadqiqot natijalarining ishonchliligi oddiy differensial tenglamalar, integral 

tenglamalar, teskari spektral masalalar, matematik fizika tenglamalari, matematik 

tahlil va funksional analiz usullaridan foydalanilganligi hamda matematik 

mulohazalar va isbotlarning qat’iyligi bilan asoslangan. 

Tadqiqot natijalarining ilmiy va amaliy ahamiyati. Tadqiqot natijalarining 

ilmiy ahamiyati – zamonaviy matematik fizikaning har xil turdagi yuklangan 

hadlarga va manbalarga ega manfiy tartibli KdF va mKdF tenglamalarini tez 

kamayuvchi va davriy funksiyalar sinfida integrallash mumkinligi bilan izohlanadi. 

Tadqiqot natijalarining amaliy ahamiyati manfiy tartibli KdF tenglamasi sayoz 

sathdagi toʻlqinlarning harakatini ifodalaydi, biz taklif qilgan algoritm yordamida 

manfiy tartibli KdF tenglamasini soliton toʻlqin tarqalishi jarayoniga ham qoʻllash 

mumkin, bu holda soliton toʻlqinlarning tarqalish tezligi oshishi yoki kamayishi 

mumkin, lekin ularning amplitudasi oʻzgarmaydi. Bu esa iqtisodiy jihatdan ancha 

kam mablagʻ talab qilgan holda uzatiladigan signallar sifatini yahshilash va doimiy 

ravishda uzulishlarsiz ishlashini taminlashga hizmat qilishi bilan izohlanadi. 

Tadqiqot natijalarining joriy qilinishi. Manfiy tartibli KdF va mKdF 

tenglamalarini tez kamayuvchi hamda davriy funksiyalar sinflarida integrallash 

bo‘yicha olingan natijalar asosida: 

Mirzo Ulug‘bek nomidagi O‘zbekiston Milliy universitetida А.Sadullayev 

rahbarligida 2020-2022 yillarda bajarilgan UT-OT-2020-1 raqamli “Monje-Аmper 

tenglamasi va ekstremal plyurisubgarmonik funksiyalar” mavzusidagi fundamental 

loyihada foydalanilgan (O‘zbekiston Milliy universitetining 2025-yil 28-noyabrdagi 

ma’lumotnomasi). Jumladan, dissertatsiyada ishlab chiqilgan manfiy tartibli 

nochiziqli evolyutsion tenglalamarni integrallash algoritmi nochiziqli bo‘lgan bir 

jinsli kompleks Monje-Amper tenglamasini yechimlarini aniqlashda qo‘lanilgan. 

Ilmiy natijalarning qo‘llanilishi, kompleks Monje-Amper operatorining spektrini, 

jumladan xos qiymat va xos funksiyalarini xususiyatlarini o‘rganish imkonini bergan; 

manfiy tartibli KdF tenglamasini tez kamayuvchi funksiyalar sinfida integrallash 

natijasida olingan natijalardan Novosibirsk davlat universitetida 2018-2022 yillarda 

bajarilgan 18-29-10086 - sonli “Kechikuvchi argumentli va yuqori tartibli differensial 

tenglamalar sistemasi. Nazariya va tadbiqlar” granti bo‘yicha ishlarni bajarishda 

foydalanilgan (Novosibirsk davlat universitetining 2025-yil 1-dekabrdagi 



9 

ma’lumotnomasi). Olingan natijalar kechikuvchi argumentlar va yuqori tartibli 

differensial tenglamalar sistemasi bilan nochiziqli tenglamalar uchun yangi 

muammolarni o‘rganish imkonini bergan. 

Tadqiqot natijalarini aprobatsiyasi. Ushbu tadqiqot natijalari 5 ta ilmiy-

amaliy anjulanlarda, jumladan 2 ta xalqaro va 3 respublika anjumanlarida 

muhokamadan oʻtgan. 

Tadqiqot natijalarini e’lon qilinganligi. Dissertatsiya mavzusi boʻyicha 5 ta 

ilmiy ish chop qilingan, shulardan, Oʻzbekiston Respublikasi Oliy attestatsiya 

komissiyasining falsafa doktori dissertatsiyalarini himoya qilishda tavsiya etilgan 

ilmiy nashrlarda 5 ta maqola, jumladan 3 tasi xorijiy va 2 tasi respublika jurnallarida 

nashr etilgan. 

Dissertatsiyaning tuzilishi va hajmi. Dissertatsiya kirish qismi, uchta bob, 

xulosa va foydalanilgan adabiyotlar roʻyxatidan iborat. Dissertatsiya hajmi 87 betni 

tashkil qiladi. 
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DISSERTATSIYANING ASOSIY MAZMUNI 

Kirish qismida dissertatsiya mavzusining dolzarbligi va ahamiyati asoslangan, 

tadqiqotning respublika fan va texnologiyalari rivojlanishining ustuvor 

yoʻnalishlariga mosligi koʻrsatilgan, dissertatsiya mavzusi boʻyicha xorijiy ilmiy-

tadqiqotlar sharhlari, masalaning oʻrganilganlik darajasi keltirilgan, tadqiqot maqsadi 

va vazifalari, obyekti va predmeti tavsiflangan, tadqiqotning ilmiy yangiligi va 

amaliy natijalari bayon qilingan, olingan natijalarning nazariy va amaliy ahamiyati 

ochib berilgan, tadqiqot natijalarining joriy qilinishi, nashr etilgan ishlar va 

dissertatsiya tuzilishi boʻyicha ma’lumotlar berilgan. 

Dissertatsiya ishining “Butun o‘qda berilgan Shturm – Liuvill va Dirak 

uchun to‘g‘ri va teskari masalaning spectral nazariyasi” deb nomlanuvchi 

birinchi bobida KdF tenglamasini tez kamayuvchi funksiyalar sinfida va mKdF 

tenglamasini davriy funksiyalar sinfida integrallash uchun zaruriy ma’lumotlar 

keltirilgan, shu bilan birga yechimni topish algoritmi taklif etilgan va misollar ishlab 

koʻrsatilgan. 

Mazkur bobning birinchi paragrafida butun o‘qda berilgan Shturm-Liuvill 

 
2( ) ,( )Ly у u x y k y x       (1.1) 

tenglamasining ushbu  

  1 ( )x u x dx





     (1.2) 

tez kamayuvchi funksiyalar sinfida qaralgan. Shturm-Liuvill tenglamasining Yost 

yechimlarini ( , )f x k  va ( , )g x k  orqali belgilangan. Ma’lumki, bu yechimlar uchun 

quyidagi asimptotik formulalar oʻrinli boʻladi: 

 lim ( , )exp( ) 1
x
f x k ikx , lim ( , )exp( ) 1

x
g x k ikx , Im 0.k  (1.3) 

Noldan farqli haqiqiy k  larda  ( , ), ( , )f x k f x k  va  ( , ), ( , )g x k g x k  

funksiyalar juftliklari (1.1) differensial tenglamaning chiziqli erkli yechimlarini 

tashkil qiladi. Shuning uchun quyidagi  

 
( , ) ( ) ( , ) ( ) ( , ),

( , ) ( ) ( , ) ( ) ( , )

f x k b k g x k a k g x k

g x k b k f x k a k f x k

  

    
 (1.4) 

yoyilmalar oʻrinli boʻladi
2
: 

Bu yerda ( , )f x k , ( , )g x k Yost yechimlari k  o‘zgaruvchi bo‘yicha yuqori yarim 

tekislikka analitik davom ettiriladi. (1.4) tenglikdagi ( , )a k t  va ( , )b k t  funksiyalar 

quyidagi xossalarga ega: 

1.  
1

( ) ( , ), ( , )
2

a k W f x k g x k
ik

  ,              (1.5) 

bu yerda  ( , ), ( , ) ( , ) ( , ) ( , ) ( , )W f x k g x k f x k g x k f x k g x k   . 

2. Haqiqiy k  larda 

                                                           
2
 Левитан Б.М. Обратные задачи Штурма-Лиувилля, (Наука, М., 1984). 
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2 2

( ) ( ), ( ) ( ),

( ) 1 ( ) ;

b k b k a k a k

a k b k

   

 
     (1.6) 

3. 
1

( ) 1a k O
k

 
   

 
, 

1
( )b k O

k

 
  

 
, при  k  ; 

4. ( )a k  funksiya Im 0k   yuqori yarim tekislikka analitik davom qiladi hamda 

chekli sondagi oddiy nollarga ega boʻladi, ya’ni 
n nk i , ( 0)n  , 1,2,...,n N . 

Bundan tashqari, bu nollarning kvadrati ( )L t  operatorning oddiy xos qiymatlaridan 

iborat boʻladi, ya’ni 
2, 1,2,...,n n n N    . 

5. ( )a z  funksiyaning Im 0z   yuqori yarim tekislikda o‘zining 
n

i , 1,2,...,n N  

nollari orqali va quyidagi  
2

1

ln(1 ( ) )1
( ) exp

2

n
j

j
j

r kz i
a z dk

z i i k z



 



 

   
  

   

   

formula yordamida qayta tiklanadi,  bu yerda 
( )

( )
( )

b k
r k

a k


  - funksiya Im 0k   da 

berilgan funksiya. (1.5) tenglik hamda ( )a k , Im 0k   funksiyaning xossasidan 

quyidagi 

 
( , ) ( , ),   1,2,...,

j j j
g x i B f x i j N   .  (1.7) 

tenglik kelib chiqadi. Bundan tashqari ( , )f x k  va ( , )g x k  Yost yechimlari uchun 

quyidagi Levin tasvirlari oʻrinli: 

 

( , ) ( , )ikx ikz

x

f x k e A x z e dz



   ,  ( , ) ( , )

x

ikx ikzg x k e A x z e dz  



   , (1.8) 

bu yerda ( , , )A x y t
 yadrolar ( , )u x t  funksiya bilan quyidagicha bogʻlangan: 

 
( ) 2 ( , )

d
u x A x x

dx

 .  (1.9) 

Ta’rif 1.1. Ushbu  1 2 1 2( , ), ( ), ( ),..., ( ), ( ), ( ),..., ( )N Nr k t t t t B t B t B t    toʻplamga 

L  operatorning sochilish nazariyasining berilganlari (S.N.B) deyiladi.  

Ta’rif 1.2. L  operatorning sochilish nazariyasining berilganlarini topishga 

toʻgʻri masala, sochilish nazariyasining berilganlari orqali Shturm-Liuvill 

operatorining ( ),u x x  potensialini topish masalasiga teskari masala deyiladi. 

(1.8) Levin tasviridagi ( , )A x y
 yadro ushbu 

 

( ) ( , ) ( , ) ( ) 0, ( ),

( ) ( , ) ( , ) ( ) 0, ( ).

x

x

x y A x y A x z z y dz y x

x y A x y A x z z y dz y x


   

   



       

       





 (1.10) 

Gelfand-Levitan-Marchenko integral tenglamasining yechimi bo‘lib, bu yerda  
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1

1
( ) ( )

( ) 2
|

n

n

N
x ikxn

n

z i

iB
x e r k e dx

da z

dz








  

 



     ,  (1.11) 

tenglik orqali aniqlanadi. 

Lemma 1.1. Agar ( , )y x  va ( , )z x   funksiyalar mos ravishda 

( , ) ( , )Ly x y x   va ( , ) ( , )Lz x z x    tenglamalarni yechimi bo‘lsa u holda 

quyidagi tenglik o‘rinli 

 ( , ), ( , ) ( ) ( , ) ( , )
d

W y x z x y x z x
dx

       . 

Mazkur bobning ikkinchi paragrafida butun o‘qdа dаvriy potensiаlli Dirаk 

operаtori uchun zаruriy mа’lumotlаr keltirib o‘tilgan.  

Quyidagi Dirak sistemasi qaralgan  

 

1 1 1

2 2 2

0 1 0 ( )
,

1 0 ( ) 0

y y yq x
Ly

y y yq x


        
                  

),( x  (1.12) 

bu yerda )(xq  haqiqiy uzluksiz   davrli funksiya,   esa kompleks parametr 

(1.12) tenglamaning ushbu  (0, ) 1 0
T

c   ,  (0, ) 0 1
T

s   boshlang‘ich shartlarni 

qanoatlantiruvchi yechimlarini  1 2( , ) ( , ) ( , )
T

c x c x c x    va 

 1 2( , ) ( , ) ( , )
T

s x s x s x    orqali belgilaymiz. 

Ta’rif 1.3. ),(),()( 21  sc   funksiyaga Dirak operatori uchun 

Lyapunov funksiyasi yoki Xill diskriminanti deyiladi.  

Yuqorida keltirilgan (1.12) tenglama ikkita chiziqli erkli yechimlarga ega va 

ular quyidagi ko‘rinishda 
2

2 1

1

( , ) ( , ) ( ) 4
( ) ( , ) ( , )

2 ( , )

s c
c x s x

s

    
   

 

   
   

boʻladi. Bu yechimlar Floke yechimlari deyiladi. Davriy potensialli (1.12) Dirak 

operatori xos qiymatga ega emas, uning spektri uzluksiz bo‘lib, u quyidagi 

to‘plamdan iborat: 

  2 1 2: 2 ( ) 2 \ ( , )n n
n

E    





       , 

ushbu ),( 212 nn   , n  intervallarga lakunalar deyiladi. Bu yerda ( )n n t   ushbu 

( , ) 2t    tenglamaning ildizlaridan iborat boʻlib, ular (1.12) tenglamaga qoʻyilgan 

davriy  (0, ) ( , )y t y t  yoki yarimdavriy  (0, ) ( , )y t y t   chegaraviy masalaning 

xos qiymatlaridan iborat boʻladi.  

Ta’rif 1.4. Ushbu ],[ 212 nnn   , n  sonlar va  2 1( , ) ( , )n n nsign s c      , 

n  ishoralarga (1.12) tenglamaning spektral parametrlari deyiladi. n  o‘z 

lakunasining cheti bilan ustma-ust tushganida 1n  deb qabul qilamiz.  

Ta’rif 1.5. Lakunalarning chetlari n , n  hamda n , 1n , n  

spektral parametrlarga (1.12) tenglamaning spektral berilganlari deyiladi.  
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Ta’rif 1.6. (1.12) tenglamaning spektral berilganlarini topish masalasiga to‘g‘ri 

masala deyiladi, aksincha, spektral berilganlar orqali (1.12) tenglamaning 

koeffitsientlarini topish masalasiga teskari spektral masala deyiladi.  

Agar (1.12) tenglamada ( )q x  ning o‘rniga ( )q x   ni qarasak, u holda topilgan 

spektor : ( )n n    , n  parametrga bog‘liq bo‘lmaydi, lekin : ( ), ( )n n      

spektral parametrlar   ga bog‘liq bo‘ladi. Topilgan spektral parametrlar quyidagi 

Dubrovin – Trubovits tenglamalar sistemasi analogini qanoatlantiradi: 

1 2 1 2
2 1 2 2

,

( )( )
( 1) ( ) ( )( )

( )
nn k n k n

n n n n n
k k n
k n

d

d
 

2 1 2
{2 ( 2 )}

n k k k
k

, n , 

bu yerda  

 2 1 2(0) ,n n n n     , (0) 1n n    , 1,2,...n  

berilgan spektral parametrlar. Shu bilan birga ( ) 1n     ishoraning qiymati ( )n   

spektral parametr o‘z lakunasining chetiga kelganda qarama-qarshisiga o‘zgaradi. 

Ushbu  0 0, 0, ( ), ( ) 1, 1n n nn n         toʻplam esa ( ,0)L   operatorning 

spektral berilganlari. Dubrovin-Trubovits tenglamalar sistemasi va quyidagi 

 1( ) ( 1) ( ) ( ( )n

n n
n

q h    






   

izlar formulasi teskari spektral masalani yechishga imkon beradi. 

Mazkur dissertatsiya ishining “Moslangan manbali manfiy tartibli Korteveg-

de Friz tenglamasini tez kamayuvchi funksiyalar sinfida integrallash” deb 

nomlangan ikkinchi bobining birinchi paragrafida manfiy tartibli KdF tenglamasini 

umumiy yechimini topish algoritmi berilgan va shu algoritm asosida misollar yechib 

koʻrsatilgan. Ushbu bobning ikkinchi paragrafida esa moslangan manbali manfiy 

tartibli KdF tenglamasi qaralgan va sochilish nazariyasini teskari masalalar usuli 

yordamida yechish algoritmi keltirib chiqarilgan va shu algoritm asosida misol 

yechib koʻrsatilgan.  

Mazkur bobning birinchi paragrafida ushbu  

2 ,

,

t x

xx

u vv

v uv





, 0x t   

KdF tenglamalar oilasiga kiruvchi tenglamani qaraymiz. Bu tenglamada ushbu  

2 1

2
w v   

almashtirishni bajarish orqali yuqoridagi tenglamani quyidagi yangi ko‘rinishga o‘tib 

olamiz 

 
4 2 ,   

,

, 0.

t x

xxx x x x

u

w

w

uw u w u x t




    
  (2.1) 

Hosil bo‘lgan (2.1) tenglamani  
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 0 0
| ( ), ,  
t

u u x x

    (2.2) 

boshlang‘ich shart bilan qaraymiz, bu yerda 
0
( )u x , x  quyidagi shartlarni 

qanoatlantiruvchi haqiqiy funksiya: 

1. 
0

(1 ) | ( ) |x u x dx




   

2. Operator 
2

0 0
: ( )L y y u x y k y    , 1x  musbat bo‘lgan N  ta oddiy xos 

qiymatlarga ega 
1 2
(0), (0),..., (0)

N
   . 

Faraz qilaylik, (2.1)-(2.3) masalada ( , )u x t funksiya x  da tez kamayuvchi 

funksiya. Bundan tashqari ( , )u x t  va ( , )w x t  funksiyalar yetarlicha silliq va quyidagi 

shartlarni qanoatlantiradi 

   

 

1,1 3,0

, ,
, ,

( , ) 0, ( , ) 0, ( , ) 0, .

h(1 | |) ( , ) ( , ) , barc a

x t x t

x xx

t
x u x t u x t dx

u C w C

w x t w x t t

t

w x x







 

 

   

 

  

Mazkur paragrafning asosiy natijasi quyidagi teoremada keltirilgan. 

Teorema 2.1. Agar ( ( , ), ( , ))u x t w x t  funksiyalar juftliklari (2.1)-(2.3) masalaning 

yechimlari bo‘lsa, u holda ( , )u x t  potensial bilan berilgan 
2

2
( ) ( , )

d
L t u x t

dx
    

operatorning sochilish nazariyasining berilganlari t  bo‘yicha o‘zgarishi quyidagicha 

bo‘ladi: 

( , )
( \{0},, ),

2

, 1,2,..., ,
2

0, 1,2,...,

( ) ( )

(

)
.

)

(

n n

n

n

k t
k k

t t

r i
r t

t k

dB B
n N

dt

d
n N

dt

t

t







 


 


  

 

 

Xulosa 2.1. Olingan natija sochilish nazariyasining berilganlarini 

evolyutsiyasini to‘liq aniqlaydi va (2.1)-(2.3) masalani yechish algoritmini qurishga 

imkon beradi.  

Misol 2.1. Quyidagi Koshi masalasini:  

,

4 2 ,  ,  0

t x

xxx x x x

u w

uw u w u x tw




    
 

ushbu 
2

2
( ,0)u x

xch
  boshlang‘ich shart bilan qaraylik. Yuqoridagilar yordamida 

Koshi masalasining umumiy yechimini topamiz: 

2

2
( , )

2

u x t
t

ch x
 
 
 

 


, 

2

1
( , )

2

w x t
t

ch x
 
 
 

 



. 
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Ikkinchi bobning ikkinchi paragrafida tez kamayuvchi funksiyalar sinfida 

manbali manfiy tartibli KdF tenglamasiga qo‘yilgan Koshi masalasi sochilish 

nazariyasining teskari masalalar usuli yordamida yechilgan  

 

2 ,

,

t x

xx

u vv G

v uv

 



  (2.4) 

bu yerda ( , )G G x t berilgan silliq funksiya bo‘lib, x  o‘zgaruvchi bo‘yicha tez 

kamayadi: 

( , ) (1)G x t o , x , 0t  . 

O‘rganilayotgan (2.4) tenglamalar sistemasi quyidagi boshlang‘ich shart bilan 

ko‘rib chiqilgan: 

 00
( ) ( )

t
u x u x


 , (2.5) 

bu yerda 0 ( )u x  funksiya quyidagi shartlarni qanoatlantiradi: 

1.   01 ( )x u x dx





   , 

2. Operator 
2

0 0
: ( )L y y u x y k y    , 1x  musbat bo‘lgan N  ta oddiy xos 

qiymatlarga ega 
1 2
(0), (0),..., (0)

N
    

Faraz qilaylik, (2.4)-(2.5) masalada ( , )u x t  funksiya x  da tez kamayuvchi 

bo‘lsin, bundan tashqari ( , )u x t  va ( , )v x t  yetarlicha silliq va quyidagi shartlarni 

qanoatlantirsin: 

 

 

2

1 , 0,

( , ) 1,  ( , ) 0,  ( , ) 0,  .x xx

u
x u dx t

x

x t x t x t x  





  
     

 

   


 (2.6) 

Mazkur paragrafning asosiy natijasi quyidagi lemmada keltirilgan. 

Lemma 2.1. Agar ( ( , ), ( , ))u x t v x t  funksiyalar juftliklari (2.4)-(2.6) masalaning 

yechimlari bo‘lsa, u holda ( , )u x t  potensial bilan berilgan ( )L t  operatorning sochilish 

nazariyasining berilganlari t  bo‘yicha o‘zgarishi quyidagicha bo‘ladi: 

 

2

2

( , ) 1
( , )

2 ( )

r k t i
r k t Gg dx

t k ika k







  

  , Im 0k  ,  (2.7) 

 

( ) 1
( , , ) ( , )

2

n n
n n

n n

dB t B
Gg x i t h x t dx

dt


 





    , 1,2,...,n N , (2.8) 

 

( ) 1
( , )

2

n
n

n

d t
G x t dx

dt









   , 1,2,...,n N ,  (2.9) 

bu yerda ( , )n x t  funksiya ( )L t  operatorning 
2( )n n t   , 1,2,...,n N  xos 

qiymatlariga mos normollovchi xos funksiyasi. 

Mazkur bobning uchinchi paragrafida tez kamayuvchi funksiyalar sinfida 

moslangan manbali manfiy tartibli KdF tenglamasiga qo‘yilgan Koshi masalasi 
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sochilish nazariyasining teskari masalalar usuli yordamida yechilgan. Ushbu 

moslangan manbali manfiy tartibli KdF tenglamalar sistemasini 

 

2

1

2 4 ,

,

, 1,2,..., , 0,

N

t x m

m

xx

m m m m

u vv
x

v uv

u m N t x



   




  




      





 (2.10) 

quyidagi boshlang‘ich shart bilan birga qaraymiz 

 00
( , ) ( ), ,

t
u x t u x x


    (2.11) 

bu yerda ( , )m m x t  , 1,2,...,m N  funksiya ( )L t  operatorning 
2

m m   , 

1,2,...,m N  xos qiymatlariga mos normollovchi xos funksiyasi 

 

2
( , ) ( )m mx t dx A t





 , 1,2,...,m N  (2.12) 

bu yerda 0 ( )u x  funksiya quyidagi shartlarni qanoatlantiradi: 

1.   01 ( )x u x dx





   ; 

2. Operator 
2

0 0
: ( )L y y u x y k y    , 1x  musbat bo‘lgan N  ta oddiy xos 

qiymatlarga ega 
1 2
(0), (0),..., (0)

N
    

Faraz qilaylik, (2.4)-(2.5) masalada ( , )u x t  funksiya x  da tez kamayuvchi 

bo‘lsin, bundan tashqari ( , )u x t  va ( , )v x t  yetarlicha silliq va quyidagi shartlarni 

qanoatlantirsin: 

  
 

2

1 , 0,

( , ) 1,  ( , ) 0,  ( , ) 0,  .x xx

u
x u dx t

x

x t x t x t x  





  
     

 

   


  (2.13) 

Mazkur paragrafning asosiy natijasi quyidagi teoremada keltirilgan. 

Teorema 2.2. Agar ( ( , ), ( , ))u x t v x t  funksiyalar juftliklari (2.4)-(2.6) masalaning 

yechimlari bo‘lsa, u holda ( , )u x t  potensial bilan berilgan ( )L t  operatorning sochilish 

nazariyasining berilganlari t  parametr bo‘yicha o‘zgarishi quyidagicha o‘zgaradi: 

( , )
( , )

r k t i
r k t

t k




 


, Im 0k  , 

( ) 1
2 ( ) ( )n

n n

n

dB t
A t B t

dt 

 
   
 

, 1,2,...,n N , 

0nd

dt


 , 1,2,...,n N . 

Misol 2.2. Quyidagi moslangan manbali manfiy tartibli KdF tenglamalar 

sistemasini:  
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2

1

2 4 ,

,

, 1,2,..., , 0,

N

t x m

m

xx

m m m m

u vv
x

v uv

u m N t x



   




  




      





 

ushbu 
2

2
( ,0)u x

xch
  boshlang‘ich shart bilan qaraylik. Yuqoridagilar yordamida 

Koshi masalasining umumiy yechimini topamiz: 

 2

2
( , )

( )c
u x t

xh t
 


, 

 2

1
( , )

( )c
x t

x th
v


 


, 1

2 ( )
( , )

2 ( ( ))

A t
x t

ch x t






 

bu yerda 
0

1
( ) 2 ( )

2

t

t t A d  
 

   
 

 . 

Dissertatsiya ishining “Modifitsirlangan manfiy tartibli Korteveg-de Friz 

tenglamasini davriy funksiyalar sinfida integrallash” deb nomlangan uchinchi 

bobi uchta paragrafni oʻz ichiga olgan. Birinchi paragrafida davriy funksiyalar sinfida 

yuklangan hadli manfiy tartibli mKdF tenglamasiga qoʻyilgan Koshi masalasi davriy 

funksiyalar sinfida integrallangan.  

Uchinchi bobning birinchi paragrafida, quyidagi manfiy tartibli mKdF 

tenglamasi 

 
2

2 ( ) (0, ) ,xt t

x

q q t q t q

q

 



  


 
  0,t x    (3.1) 

ushbu 

 0 00 0 0
( , ) ( ), ( , ) ( ), [ ( , ) ( , )] ( )t tt x x

q x t q x x t t q x t x t t   
  
    ,  (3.2) 

boshlang‘ich shart bilan x  bo‘yicha -davriy bo‘lgan va ushbu 

 

1 1

1 1

( , ) ( 0) ( 0) ( 0),

( , ) ( 0) ( 0) ( 0),

x t

x t

q x t C t C t C t

x t C t C t C t

     

     
 (3.3) 

silliqlik shartini qanoatlantiradigan ),( txq  haqiqiy funksiyani topish talab etilsin: 

),(),( txqtxq  ,    , ,t tx t x t     x , 0t  

bunda 
3

0( ) ( )q x C  berilgan haqiqiy funksiya. Bu yerda 
1

0( ) [0, )t C    va

( ) [0, )t C    oldindan berilgan uzluksiz va chegaralangan funksiyalar. Mazkur 

paragrafning asosiy natijasi quyidagi teoremada bayon qilingan. 

Tеоrema 3.1. Agar  ( , ), ( , )q x t x t  funksiyalar juftligi (3.1)-(3.3) masalaning 

yechimi bo‘lsa, u holda ushbu Dirak operatorining n , n  spektri   va t  

parametrlarga bog‘liq bo‘lmaydi, bunda ),( tn  , n  spektral parametrlar esa 

ushbu Dubrovin tenglamalar sistemasi analogini  

 

1 ( ) (0, )
( 1) ( ) ( ) (0, ) (0, ) , \ {0}

2

n

n n n t t

n

t q t
t h q t t n


   



 
     

 
, (3.4) 
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bu yerda 2 1 2
2 1 2 2

,

( )( )
( ) ( )( )

( )

k n k n
n n n n n

k
k n

k n

h
   

    
 








 
    


 

hamda ushbu 

 
0 0

0 0
( ) (0), ( ) (0), 1n n n nt t
t t n   

 
  

 
(3.5) 

boshlangʻich shartlarni qanoatlantiradi. Bu yerda ( )n   ishoralar, ( )n   spektral 

parametr  2 1 2,n n   oʻz lakunasining chetiga kelganda qarama-qarshisiga oʻzgaradi.  

Ushbu  0 0, 0, ( ), ( ) 1, 1n n nn n         toʻplam esa ( ,0)L   operatorning 

spektral berilganlari. 

Uchinchi bobning ikkinchi paragrafida Dubrovin tenglamalar sistemasi uchun 

qo‘yilgan Koshi masalasi yechimining mavjud va yagonaligi isbotlangan.  

Uchinchi bobning oxirgi paragrafida, quyidagi manfiy tartibli mKdF tenglamasi 

 

    1 1 2 2 1

2

,2 ,, ,xt t

x

t sq t dq

q




        



   



   


 





   0,t x   (3.6) 

ushbu 

 0 00 0 0
( , ) ( ), ( , ) ( ), [ ( , ) ( , )] ( )t tt x x

q x t q x x t t q x t x t t   
  
    , (3.7) 

boshlang‘ich shart bilan x  bo‘yicha -davriy bo‘lgan va ushbu 

 

1 1

1 1

( , ) ( 0) ( 0) ( 0),

( , ) ( 0) ( 0) ( 0)

x t

x t

q x t C t C t C t

x t C t C t C t

     

       

(3.8) 

silliqlik shartini qanoatlantiradigan ),( txq  haqiqiy funksiyani topish talab etilsin: 

),(),( txqtxq  ,    , ,t tx t x t     x , 0t  

bunda 
3

0( ) ( )q x C  berilgan haqiqiy funksiya. Qaralayotgan masalada 

 ( , ) [0, ) [0, )t C       oldindan berilgan haqiqiy, uzluksiz funksiya va ushbu 

asimptotikaga ega  4( , ) 1 ,t O     , 
Ttxtx )),,(),,,(( 21     - Dirak 

tenglamasining Floke yechimlari 

 
yytx

dx

dy
BytL  ),()( , x , (3.9) 

bu yerda  































)(

)(
,

0),(

),(0
),(,

01

10

2

1

xy

xy
y

txq

txq
txB .

1

2

( , )

( , )

y x t
y

y x t

 
  
 

 

Ttxstxstxs )),,(),,,((),,( 21    lar orqali (3.9) tenglamaning ushbu 

(0, , ) (0,1)Ts t  boshlang‘ich shartni qanoatlantiruvchi yechimini belgilaymiz. 

Mazkur paragrafning asosiy natijasi quyidagi teoremada bayon qilingan. 

Tеоrema 3.2. Agar  ( , ), ( , ), ( , , ), ( , , )q x t x t x t x t       funksiyalar juftligi 

(3.6)-(3.8) masalaning yechimi bo‘lsa, u holda Dirak operatorining n , n  

spektri   va t  parametrlarga bog‘liq bo‘lmaydi, bunda ),( tn  , n  spektral 

parametrlar esa ushbu Dubrovin tenglamalar sistemasi analogini  
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   
2

1

2

1
( 1) ( ) ( ) (0, ) (0, ) , \{

, , ,
0}n

n n n t t

n n

t h q t
t

dt
t s

n
   

   
  





 
     

 
 .

 (3.10) 

hamda ushbu 

 
0 0

0 0
( ) (0), ( ) (0), 1n n n nt t
t t n   

 
    (3.11) 

boshlangʻich shartlarni qanoatlantiradi, bu yerda  

2 1 2
2 1 2 2

,

( )( )
( ) ( )( )

( )

k n k n
n n n n n

k
k n

k n

h
   

    
 








 
    


. 

Bu yerda ( )n   ishoralar ( )n   spektral parameter  2 1 2,n n   oʻz lakunasining 

chetiga kelganda qarama-qarshisiga oʻzgaradi. Ushbu 

 0 0, 0, ( ), ( ) 1, 1n n nn n         toʻplam esa ( ,0)L   operatorning spektral 

berilganlari. 
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XULOSA 

Ushbu dissertatsiya tez kamayuvchi funksiyalar sinfida manfiy tartibli KdF 

tenglamasini integrallash va davriy funksiyalar sinfida  manfiy tartibli mKdF 

tenglamasini integrallashga bagʻishlangan.   

Tadqiqotning asosiy natijalari quyidagilar:  

1. Shturm-Liuvill operatori uchun sochilish nazariyasining teskari masalasi 

usulidan foydalanib, tez kamayuvchi funksiyalar sinfida manfiy tartibli KdF 

tenglamasining integrallanuvchanligi isbotlangan;  

2. Shturm-Liuvill operatori uchun sochilish nazariyasining teskari masalasi 

usulidan foydalanib, moslangan manbali manfiy tartibli KdF tenglamasining 

integrallanuvchanligi isbotlangan;  

3. Dirak operatori uchun teskari spektral masala usulidan foydalanib, davriy 

funksiyalar sinfida yuklangan hadli va integral manbali  manfiy tartibli mKdF  

tenglamasining integrallanuvchanligi isbotlangan;  

4. Dubrovin differensial tenglamalar sistemasi uchun Koshi masalasining 

yechimi mavjud va yagonaligi isbotlangan.  

Olingan natijalar dissertatsiya tadqiqot maqsadlariga erishilganligini tasdiqlaydi. 

Olingan barcha natijalar teskari spektral masala usuli yordamida nochiziqli 

evolyutsion tenglamalarni integrallash nazariyasiga katta hissa qo‘shadi. 
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ВВЕДЕНИЕ (аннотация диссертации доктора философии (PhD)) 

Актуальность и востребованность темы диссертации. Во многих 

научных и прикладных математических исследованиях проводимых в мире 

особое внимание уделяется исследованию прямых и обратных спектральных 

задач для оператора Штурма-Лиувилля. В настоящее время прямые и обратные 

задачи спектрального анализа играют важную роль при нахождении решений 

эволюционных уравнений современной математической физики и определения 

класса их решений. Кроме того, эти задачи актуальны в радиотехнике, 

нелинейной оптике, квантовой механике и моделировании кристаллических 

свойств аморфных тел. Алгоритмы решения задач Коши, поставленных для 

уравнения Кортевега-де Фриза (КдФ) и модифицированного уравнения 

Кортевега-де Фриза (мКдФ), с использованием методов обратной задачи теории 

рассеяния для оператора Штурма-Лиувилля и обратной спектральной задачи 

для оператора Дирака с периодическими коэффициентами, имеют 

существенное значение при изучении распространения ультракоротких 

импульсов в нелинейных средах, в некоторых задачах нелинейной 

электродинамики, включая вышеупомянутые области.  

В настоящее время приоритетное внимание уделяется исследованиям 

разработки алгоритма нахождения решения задачи Коши, поставленной для 

нелинейного уравнения КдФ отрицательного порядка и уравнения мКдФ 

отрицательного порядка с дополнительными членами в классах 

быстроубывающих и периодических функций. Поэтому актуальными являются 

исследования, позволяющих показать, что наряду с уравнением КдФ 

отрицательного порядка в классах быстро убывающих и периодических 

функций существуют решения нелинейного уравнения КдФ отрицательного 

порядка и модифицированного уравнения КдФ отрицательного порядка с 

нагруженными и дополнительными членами, которые имеют 

солитонообразную форму с постоянной амплитудой и представимы в виде 

равномерно сходящегося функционального ряда. 

В нашей республике осуществляются масштабные меры направленные на 

определения решений нелинейных эволюционных уравнений математической 

физики методом прямых и обратных спектральных задач для оператора 

Штурма-Лиувилля, а также на практическое применение полученных решений. 

В частности, особое внимание уделяется изучению задач спектральной теории 

систем обыкновенных дифференциальных уравнений первого порядка. В 

результате достигнуты значительные результаты в построении солитообразных 

решений нелинейных эволюционных уравнений отрицательного порядка 

современной математической физики с использованием методов прямых и 

обратных задач теории рассеяния. Расширение сферы научных исследований в 

области математики, повышение их эффективности и практической значимости 

определены в качестве приоритетных направлений развития исследований в 

области математики и ее приложений
3
. При выполнении этих задач, в частности 

                                                           
3
 Постановление Президента Республики Узбекистан № ПП-4708 «О мерах по повышению качества 

образования и развитию научных исследований в области математики», от 07.05.2020 г. 
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для интегрирования нелинейных эволюционных уравнений современной 

математической физики, важное научное значение имеет изучение 

существования решений задачи Коши для уравнения КдФ отрицательного 

порядка с самосогласованным источником  в классе быстроубывающих 

функций и уравнения мКдФ отрицательного порядка в классе периодических и 

быстроубывающих функций  методами  обратных спектральных задач  

Данное диссертационное исследование в определенной степени служит 

реализации задач, постановленных в Указах и постановлениях Президента 

Республики Узбекистан от 29 октября 2020 года УП-6097 «Об утверждении 

Концепции развития науки до 2030 года» и от 28 января 2022 года УП-60 «О 

Стратегии развития Нового Узбекистана на 2022-2026 годы», от 9 июля 2019 

года № ПП-4387 «О мерах государственной поддержки дальнейшего развития 

математического образования и науки, а также коренного совершенствования 

деятельности Института математики имени В. И. Романовского Академии наук 

Республики Узбекистан», а также в других нормативных правовых актах, 

касающихся данной деятельности. 

Соответствие исследования приоритетным направлениям разви-тия 

науки и технологии республики. Данное исследование выполнено в 

соответствии с приоритетным направлением развития науки и технологий в 

Республике Узбекистан IV. «Математика, механика и информатика». 

Степень изученности проблемы. Восстановления линейного оператора 

Штурма-Лиувилля по данным рассеяния называют обратной задачей. Обратная 

задача по данным рассеяния для оператора Штурма-Лиувилля изучалась Л.Д. 

Фаддеевым, В.А. Марченко, Б.М. Левитаном и другими учёными. Метод 

решения обратной задачи теории рассеяния впервые был применен в 1967 году 

Гарднером, Грином, Крускалом и Миурой к процессу интегрирования 

классического КдФ. Тогда же ими было найдено его солитонное решение. В 

1968 году Лакс показал, что метод обратной задачи теории рассеяния имеет 

общий характер, и сумел найти аналоги уравнения КдФ более высокого 

порядка. 

Другой актуальной проблемой является интегрирование классического 

уравнения КдФ в классе периодических функций, иными словами нахождение 

периодических аналогов солитонных решений уравнения КдФ. В 1974 г. С.П. 

Новиков показал, что всякое стационарное периодическое решение уравнения 

КдФ и его обобщений более высокого порядка является конечнозонным 

потенциалом и состоит из квазипериодических функций. В том же году А.Р. 

Итс, В.Б. Матвеев и Б.А. Дубровин, С.П. Новиков с помощью метода обратных 

спектральных задач, поставленных над оператором Хилла, показали, что 

классическое уравнение КдФ интегрируемо в классе конечнозонных 

периодических и квазипериодических функций. Ими была найдена явная 

формула для конечнозонного решения классического уравнения КдФ. 

Класс периодических функций целесообразно разделить на два 

подмножества: класс периодических конечнозонных функций и класс 

периодических бесконечнозонных функций. Пример периодического 

бесконечнозонного потенциала впервые был введен в 1922 году Э. Л. Инсом. 
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При этом было доказано, что все лакуны в спектре оператора Хилла открыты. 

Из приведенных выше рассуждений видно, что класс периодических 

конечнозонных потенциалов и класс периодических бесконечнозонных 

потенциалов не являются пустыми множествами. Поэтому задача 

доказательства разрешимости задачи Коши, поставленной для нелинейных 

эволюционных уравнений в классе периодических бесконечнозонных функций 

является одной из актуальных в современной математической физике. 

Интегрируемость классического уравнения КдФ с источником в классе 

периодических функций впервые была доказана в 2010 году в статье А. Б. 

Хасанова и А. Б. Яхшимуратова.  Интегрируемость уравнения КдФ 

отрицательного порядка с источником в классе периодических функций 

впервые была доказана в 2022 году в статье Г.У. Уразбоева и М.М. Хасанова. 

Связь диссертационного исследования с планами научно-исследо-

вательских работ высшего образовательного или научно-исследова-

тельского учреждения, где выполнена диссертация. Диссертация выполнена 

в рамках плана научно-исследовательских работ «Приложения спектральной 

теории дифференциальных операторов к неленейным эволюционным 

уравнениям» Ургенчского государственного университета именим Абу Райхана 

Беруни. 

Цель исследования Интегрирование уравнения КдФ отрицательного 

порядка и уравнения мКдФ отрицательного порядка методами обратной 

спектральной задачи с использованием методов решения обратных задач для 

оператора Штурма-Лиувилля и оператора Дирака. 

Задачи исследования: 

используя метод обратной задачи теория рассеяния для оператора 

Штурма-Лиувилля показать интегрируемость уравнения КдФ отрицательного 

порядка в классе быстроубивающих функций; 

изучение интегрируемости уравнения КдФ отрицательного порядка с 

самосогласованным источником методом обратной задачи теории рассеяния 

для оператора Штурма-Лиувилля; 

доказательство разрешимости задачи Коши для уравнения мКдФ 

отрицательного порядка с нагруженным членом и интегральным источником в 

классе периодических функций; 

доказательство существования и единственности глобального решения 

уравнения мКдФ отрицательного порядка с нагруженным членом и 

интегральным источником в классе периодических функций. 

Объектом исследования являются уравнения КдФ отрицательного 

порядка c самосогласованным источником и уравнения мКдФ отрицательного 

порядка с нагруженным членом и интегральным источником в классе 

быстроубывающих и периодических функций. 

Предметом исследования является применение метода обратной задачи 

рассеяния для оператора Штурма-Лиувилля, а также обратной спектральной 

задачи по спектральным данным оператора Дирака к интегрированию 

нелинейных эволюционных уравнений. 
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Методы исследования. В диссертационной работе использованы методы 

математической физики, математический анализ, функциональный анализ, 

спектральная теория дифференциальных операторов, теория функций 

комплексных переменных и методы решения дифференциальных уравнений. 

Научная новизна исследования заключается в следующем: 

используя метод обратной задачи теории рассеяния для оператора 

Штурма-Лиувилля, доказана интегрируемость уравнения КдФ отрицательного 

порядка в классе «быстроубывающих» функций; 

используя метод обратной задачи теории рассеяния для оператора 

Штурма-Лиувилля, доказана интегрируемость уравнения КдФ отрицательного 

порядка с самосогласованным источником в классе «быстроубывающих» 

функций; 

используя метод обратной спектральной задачи для оператора Дирака, 

доказана разрешимость задачи Коши для уравнения мКдФ отрицательного 

порядка с нагруженным членом в классе периодических функции; 

используя метод обратной спектральной задачи для оператора Дирака 

доказана интегрируемость уравнения мКдФ отрицательного порядка с 

интегральным источником в классе периодических функций. 

Практическими результатами являются следующие: 

из алгоритмов, использованных для нахождения убывающих и 

периодических решений задачи Коши для уравнения КдФ отрицательного 

порядка и уравнения мКдФ отрицательного порядка с источниками, найдены 

точные солитоные и периодические решения; 

используя алгоритм интегрирования уравнения КдФ и уравнения мКдФ 

отрицательного порядка в классе быстроубывающих и периодических функций 

обнаружено, что скорость распространция солитона и периодических волн 

увеличивается или уменьшается, а их амплитуды не меняются. 

Достоверность результатов исследования основана на методах 

математической физики, спектрального и функционального анализа при 

решении обратных спектральных задач для дифференциальных операторов 

Штурма-Лиувилля и Дирака с убывающими и периодическим коэффициентами, 

а также применении к решению нелинейных эволюционных уравнений, 

математических рассуждений, основанных на строгих доказательствах. 

Научная и практическая значимость результатов исследования. 

Научная значимость работы заключается в том, что нелинейные эволюционные 

уравнения в современной математической физике могут быть интегрированы в 

классе убывающих и периодических функций. 

Практическая значимость результатов исследований основывается на их 

применениим в нелинейной оптике, радиотехнике, электродинамике и 

современной математической физике. 

Внедрение результатов исследования. Результаты данной 

диссертационной работы на тему «Интегрирование уравнений Кортевега-де 

Фриза отрицательного порядка и модифицированных уравнений Кортевега-де 

Фриза с помощью методов обратной спектральной задачи», выполненной для 

получения ученой степени доктора философии (PhD) по физико-
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математическим наукам, были использованы в фундаментальном проекте UT-

OT-2020-1 на тему «Уравнение Монжа-Ампера и экстремальные 

плюрисубгармонические функции», выполненном в Национальном 

университете Узбекистана имени Мирзо Улугбека под руководством А. 

Садуллаева в 2020-2022 годах. В частности, разработанный в диссертации 

алгоритм интегрирования нелинейных эволюционных уравнений 

отрицательного порядка был применен для нахождения решений нелинейного 

однородного комплексного уравнения Монжа-Ампера. Применение научных 

результатов позволило исследовать свойства спектра комплексного оператора 

Монжа-Ампера, включая характеристики собственных значений и собственных 

функций. (Рекомендация Национального университета Узбекистана от 28 

ноября 2025 года). 

В научном исследовании проведено интегрирование уравнения Кортевега-

де Фриза отрицательного порядка в классе «быстроубывающих» функций с 

помощью метода обратной задачи рассеяния, поскольку в нем существенно 

используется решение задачи о восстановлении потенциала оператора Штурма-

Лиувилля на всей оси по данным рассеяния. Получены аналитические решения, 

изучены свойства солитонных структур и разработаны методы их анализа в 

эволюционных нелинейных системах. Полученные результаты вносят вклад в 

развитие теории интегрируемых систем и нелинейных дифференциальных 

уравнений в частных производных.  

Результаты были использованы сотрудниками кафедры 

дифференциальных уравнений ММФ НГУ при проведении работ по гранту 

РФФИ № 18-29-10086 – «Системы дифференциальных уравнений высокой 

размерности и уравнения с запаздывающим аргументом. Теория и приложения» 

(2018–2022). Эти результаты являлись полезными в теоретических 

исследованиях и при разработке алгоритмов. Полученные результаты 

позволили рассмотреть новые задачи для нелинейных уравнений с 

запаздывающим аргументом и для классов систем дифференциальных 

уравнений большой размерности. (Рекомендация Новосибирского 

государственного университета от 1 декабря 2025 г.). 

Апробация результатов исследования. Результаты исследований 

обсуждались на 5 научно-практических конференциях, в том числе 2 

международных и 3 республиканских. 

Опубликованность результатов исследования. По теме диссертации 

опубликовано 5 научных работ, из них 5 статей опубликовано в научных 

изданиях, рекомендованных к защите докторских диссертаций ВАК 

Республики Узбекистан, в том числе 2 в зарубежных и 3 в республиканских 

научных журналах. 

Структура и объем диссертации. Диссертация состоит из введения, трёх 

глав, заключения и списка использованной литературы. Объем диссертации 

составляет 87 страниц. 
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ОСНОВНОЕ СОДЕРЖАНИЕ ДИССЕРТАЦИИ 

Во введении обоснованы актуальность и востребованность темы 

диссертации, определено соответствие исследования приоритетным 

направлениям развития науки и технологий республики, преведены обзор 

зарубежных научных исследований по теме диссертации, и степень 

изученности проблемы, сформулированы цели и задачи, выявлены объект и 

предмет исследования, изложены научная новизна и практические результаты 

исследования, раскрыта теоретическая и практическая значимость полученных 

результатов, даны сведения о внедрении результатов исследования, об 

опубликованных работах и о оструктуре диссертации. 

В первой главе диссертации «Прямые и обратные задачи спектральной 

теории операторов Штурма-Лиувилля и Дирака на всей оси», приведены 

хорошо известные, но необходимые исходные данные, основные обозначения, 

определения, понятия и основные теоремы, необходимые для интегрирования 

уравнения КдФ отрицательного порядка в классе быстроубывающих и 

периодических функций.  

В первом параграфе первой главы рассматривается следующее уравнение 

Штурма – Лиувилля на всей оси  
2( ) ,( )Ly у u x y k y x         (1.1) 

с действительной функцией )(xu  (потенциалом), удовлетворяющей условию 

«быстроубываемости» 

 1 ( ) .x u x dx





       (1.2) 

Обозначим через ),( kxf  и ),( kxg  решения Йоста уравнения (1.1) с 

асимптотиками  

,1)exp(),(lim 


ikxkxf
x

 .0Im,1)exp(),(lim 


kikxkxg
x

  (1.3) 

При условии (1.2) такие решения существуют, определяются асимптотиками 

(1.3) однозначно. 

При этом вещественные пары функций  ),(),,( kxfkxf   и 

 ),(),,( kxgkxg   являются парами линейно независимых решений уравнения 

(1.1), поэтому  

(

( , ) ( ) ( ,

, ) ( ) ( , ) ( ) ( ,

) ( ) (

)

, )

.g x

f x k a k g x k

k b k f x k a

b k g x k

k f x k



 



  


   (1.4) 

По переменной k  решения Йоста ),( kxf  и ),( kxg  аналитически 

продолжаются в верхнюю полуплоскость 0Im k .  

Коэффициенты ( )a k  и   ( )b k  обладают следующими свойствами: 

1.  
1

( ) ( , ), ( , ) ,
2

a k W f x k g x k
ik

       (1.5) 

где 

 ( , ), ( , ) ( , ) ( , ) ( , ) ( , ).W f x k g x k f x k g x k f x k g x k    
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2. При действительных k   

( ) ( ), ( ) ( )b k b k a k a k    , 
2 2

( ) 1 ( )a k b k       (1.6) 

3. 
1

( ) 1a k O
k

 
   

 
, 

1
( )b k O

k

 
  

 
, при k  . 

4. Функция )(ka  аналитически продолжается в полуплоскость 0Im k   и 

имеет там конечное число нулей, n nk i , ( 0)n  , 1, 2, ... ,n N  эти нули 

являются простыми, причем 
2

nn    собственное значение оператора 
0L . 

5. При 0Im z  функция )(za  восстанавливается по своим нулям ni , 

1, 2,...,n N  и функции 
)(

)(
)(

ka

kb
kr


  заданной на действительной оси по 

формуле  
2

1

ln(1 ( ) )1
( ) exp .

2

N
n

n
n

r kz i
a z dk

z i i k z



 



 

   
  

   

   

Из второго равенства формулы (1.4) и (1.5), с учётом четвертого свойства 

функции ( )a k , получим следующее соотношение: 

( , ) ( , ),   1,2,...,
j j j

g x i B f x i j N   .   (1.7) 

Для решений Йоста задачи (1.1) - (1.2) справедливы следующие 

интегральные представления: 

( , ) ( , ) ,ikx ikt

x

f x k e A x t e dt


       (1.8) 

( , ) ( , ) ,
x

ikx iktg x k e A x t e dt


  



       (1.9) 

где ядра ( , )A x y

 и ( , )A x y
 связаны с потенциалом соотношениями:  

( ) 2 ( , ), ( ) 2 ( , ).
d d

u x A x x u x A x x
dx dx

      (1.10) 

Ядра ( , )A x y
 и ( , )A x y

 являются решениями интегральных уравнений 

Гельфанда-Левитана-Марченко: 

( ) ( , ) ( , ) ( ) 0, ( )

( ) ( , ) ( , ) ( ) 0, ( ),

x

x

x y A x y A x z z y dz y x

x y A x y A x z z y dz y x


   

   



       

       




             

(1.11) 

где функция задаётся выражением: 

1

1
( ) ( )

( ) 2
|

n

n

N
x ikxn

n

z i

iB
x e r k e dx

da z

dz








  

 



     ,   (1.12) 

а ( )a z - аналитическое продолжение функции ( )a k  при (Im 0)k   в верхнюю 

комплексную полуплоскость. 
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Определение 1.1. Набор 
1 2 1 2

{ ( ),  ,  ,...,  ,  ,  ,...,  }
N N

r k B B B   
 называется 

данными рассеяния для задачи (1.1)–(1.2). 

Определение 1.2. Прямая задача рассеяния состоит в определении данных 

рассеяния по потенциалу )(xu , а обратная в восстановлении по данным 

рассеяния потенциала )(xu  уравнения (1.1). 

Рассмотрим функцию  

( ( , ) ( , ))

( )
( )

n

n

k i

n

n

d
g x k B f x k

dk
h x

a i









 , 1,2,...,n N .  (1.13) 

Нетрудно показать, что функция ( )nh x  является решением уравнения 
2

n
Ly y  , 1,2,...,n N . 

Отсюда, на основании (1.13), выводим асимптотики для 

( ) nx

n
h x e


 , x  ,     (1.14) 

( ) nx

n n
h x B e


 , x  .    (1.15) 

Из асимптотик (1.14) и (1.15) следуют следующие выражения: 

 

 

( ), ( , ) 2 1,2,..., ,

( ),

,    

.( , ) 2

n n n

n n n n

W h x f x i n N

W h x g x i B

 

 

  

 
.   (1.16) 

В дальнейшем нам понадобится сдедующая лемма 

Лемма 1.1. Пусть функции  ),( xy  и ),( xz  являются решениями 

уравнений ( , ) ( , )Ly x y x  и ( , ) ( , )Lz x z x , соответственно. Тогда 

справедливо равенство 

  ),(),()(),(),,(  xzxyxzxyW
dx

d
 . 

Из этой леммы, в частности, следует ортогональность собственных функций, 

соответствующих различным собственным значениям. 

Во втором параграфе рассматривается система уравнений Дирака на всей 

прямой 

1 1 1

2 2 2

0 1 0 ( )
,

1 0 ( ) 0

y y yq x
Ly

y y yq x


        
                  

 x ,           (1.17) 

где )(xq  – действительная непрерывная функция из класса 
1( )C , имеющая 

период  , а  -комплексный параметр. 

Обозначим через  Txcxcxc ),(),,(),( 21    и  Txsxsxs ),(),,(),( 21    

решения уравнения (1.17), удовлетворяющие начальным условиям 
Tc )0,1(),0(   и 

Ts )1,0(),0(  . 

Функция ),(),()( 21  sc   называется функцией Ляпунова или 

дискриминантом Хилла для оператора Дирака (1,17). Следующее утверждение 

составляет содержание теоремы Флоке: при 04)(2    уравнение (1.17) 

имеет два линейно независимых решения имеющие вид: ),(),(   xpx

x





 
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, где ),( xp
 –  -периодические вектор-функции по x  и 

2/)4)()(( 2    ; при 2)(    уравнение (1.17) имеет решение с 

периодом  ; при 2)(    уравнение (1.17) имеет решение с антипериодом 

. Если положить 1),0(1   , то 

),(
),(2

4)(),(),(
),(),(

1

2

12 



 xs

s

cs
xcx


 

. 

Эти решения принято называть решениями Флоке. Спектр оператора (1.17) 

состоит из следующего множества 

2 1 2
{ : 2 ( ) 2 } \ ( , )

n n
n

E . 

Интервалы ),( 212 nn   , n  называются лакунами. 

Корни уравнения 0),(1 s  обозначим через n , n . Числа n  

совпадают с собственными значениями задачи Дирихле 0)0(1 y , 0)(1 y  для 

системы (1.17) и выполняются соотношения ],[ 212 nnn   , n . 

Определение 1.3. Числа ],[ 212 nnn   , n  и знаки 

 ),(),( 12 nnn cssign   , n  называются спектральными параметрами 

задачи (1.17).  

Определение 1.4. Спектральные параметры nn  , , n  и границы 

спектра n , n Z  называются спектральными данными задачи (1.17).  

Определение 1.5. Нахождение спектральных данных задачи (1.17) 

называется прямой задачей, а восстановление коэффициента )(xq  по 

спектральным данным называется обратной задачей. 

Если в задаче (1.17) вместо )(xq  рассмотреть )( xq , то спектр 

полученной задачи не будет зависеть от параметра  : nn  )( , n , а 

спектральные параметры будут зависеть от параметра  : )(n , )( n , n . 

Эти спектральные параметры удовлетворяют аналогу системы уравнений 

Дубровина-Трубовица: 

12( 1) ( ) ( ) ,nn
n n n

d
h

d


   



    n Z , 

где 

2 1 2
2 1 2 2

,

( )( )
( ) ( )( )

( )

k n k n
n n n n n

k k n
k n

h
   

    
 









 
   


 . 

Знак )( n  меняется на противоположный при каждом столкновении 

)(n  с границами своей лакуны ],[ 212 nn   . 

Система уравнений Дубровина-Трубовица, а также следующая формула 

следов 



32 

1( ) ( 1) ( ) ( ( ))n

n n

n

q h    






      (1.18) 

дают метод решения обратной спектральной задачи. 

Лемма 1.2 Если вектор-функция 1 2( , )Ty y  является решением системы 

(1.17), то выполняются следующие тождества: 

2 2 2 2

2 1 2 1 1 2

2 2 2 2

2 1 1 2

1 1
2 [ ] ( ),

2

1
[ ] ( ).

2

y y y y q y y

y y q y y

 
   

  

   (1.19) 

Вторая глава диссертации называется «Интегрирование уравнения 

Кортевега-де Фриза отрицательного порядка с самосогласованным 

источником в классе «быстроубывающих» функций. 

В первом параграфе второй главы «Интегрирование уравнения 

Кортевега–де Фриза отрицательного порядка методом обратной задачи 

рассеяния», с помощью метода обратной задачи рассеяния доказывается 

существование решения уравнения КдФ отрицательного порядка. 

Рассмотрим систему уравнений 

2 ,

,

t x

xx

u vv

v uv





, 0,x t   

которая называется  уравнения КдФ отрицательного порядка и включается в 

иерархию уравнений КдФ . 

Далее, выполняя следующую замену переменных: 

2 1

2
w v    

преобразуем приведенное выше уравнение к новому виду: 

4 2 ,  ,  0.

t x

xxx x x x

u w

uw u w u x tw




    
  (2.1) 

Мы рассматриваем уравнения (2.1) с начальным условием: 

0 0
| ( ), ,  
t

u u x x

      (2.2) 

где 
0
( )u x , x   действительная функция, удовлетворяющая следующим  

условиям: 

1) 
0

(1 ) | ( ) |x u x dx




  . 

2) Оператор 2

0 0
: ( )L y y u x y k y    , 1x  имеет N  простых 

отрицательных собственных значений 
1 2
(0), (0),..., (0)

N
   . 

Предположим, что в задаче (2.1) - (2.2) функция ( , )u x t  является быстро 

убывающей при x . Кроме того, функции ( , )u x t  и ( , )w x t  достаточно 

гладкие и удовлетворяют следующим условиям: 
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   

 

1,1 3,0

(1 | |) ( , ) ( , ) ,   

.

е

, ,

( , ) 0, (

в

, ) 0, ( , ) 0

для

,

с х 

x x

t

x

x

u

t

u x t u x t d

C w C

w x t w w x t x

t

x

x












  



    

   (2.3) 

Основной результат этого параграфа сформулирован в следующей 

теореме. 

Теорема 2.1. Если пара функций ( ( , ), ( , ))u x t w x t  является решением задачи 

(2.1)-(2.3), то данные рассеяния оператора 
2

2
( ) ( , )

d
L t u x t

dx
    с потенциалом 

( , )u x t  меняются по t  следующим образом: 

( , )
( \ {0},

( )

, ), при
2

, 1,2,..., ,
( )

( )

(
0

)

2

.

n n

n

n

kr i
r t

t k

dB B
n N

dt

d

dt

t
k k

t t

t

t








 




  



 

Полученные равенства полностью определяют эволюцию данных 

рассеяния, что позволяет построить алгоритм нахождения решения задачи (2.1) 

- (2.3).  

Пример 2.1. Теперь рассмотрим следующую задачу Коши 

4 2 ,  ,  0

,
t x

xxx x x x

u w

uw u w u xw t




    
 

при начальном условии 
2

2
( ,0) .u

xch
x    

Применяя теорему 2.1, восстановим потенциал и получим ( , ), ( , )u x t w x t   

2

2
( , )

2

u x t
t

ch x
 
 
 

 



, 
2

1
( , )

2

w x t
t

ch x
 
 
 

 



. 

Во втором параграфе второй главы диссертатции «Уравнение Кортевега-

де Фриза отрицательного порядка с источником и преобразование данных 

рассеяния» с помощью метода обратной задачи рассеяния доказывается 

существование решения уравнения КдФ отрицательного порядка с источником. 

Рассмотрим систему уравнений КдФ отрицательного порядка с 

источником: 

2 ,t x

xx

u vv G

v uv

 



      (2.4) 

где ( , )G x t заданная гладкая функция, «быстроубывающая» по переменной x : 

( , ) (1)G x t o , x , 0t  . 

Исследуемая система уравнений (2.4) рассматривается с начальным 

условием: 
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00
( ) ( )

t
u x u x


 ,     (2.5) 

где функция 0 ( )u x  удовлетворяет следующим условиям: 

1.   01 ( ) .x u x dx





    

2. Оператор Штурма - Лиувилля 
2

0 02
( )

d
L u x

dx
   , x  имеет N  простых 

отрицательных собственных значений: 
1(0) , 

2 (0) ,…, (0).N   

Предположим, что в задаче (2.4)-(2.5) функция ( , )u x t  является быстро 

убывающей при x . Кроме того, функции ( , )u x t  и ( , )v x t  достаточно 

гладкие и удовлетворяют следующим условиям: 

 
 

2

1 , 0,

( , ) 1,  ( , ) 0,  ( , ) 0,  .x xx

u
x u dx t

x

x t x t x t x  





  
     

 

   


 (2.6) 

Основной результат этого параграфа сформулирован в следующей 

основной лемме. 

Лемма 2.1. Если потенциал оператора 
2

2
( ) ( , )

d
L t u x t

dx
    является 

решением задачи Коши (2.4)-(2.5) в классе функций, удовлетворяющих 

условию (2.6). то данные рассеяния оператора )(tL  изменяются по t  

cледующим образом: 

2

2

( , ) 1
( , )

2 ( )

r k t i
r k t Gg dx

t k ika k







  

  , Im 0k  ,  (2.7) 

( ) 1
( , , ) ( , )

2

n n
n n

n n

dB t B
Gg x i t h x t dx

dt


 





    ,   (2.8) 

( ) 1
( , )

2

n
n

n

d t
G x t dx

dt









   , 1,2,...,n N    (2.9) 

где ( , )n x t  нормированные собственные функции оператора ( )L t

соответствующие собственным значениям 2( )n n t   , 1,2,...,n N . 

В третьем параграфе второй главы диссертатции «Решение задачи Коши 

для уравнения Кортевега-де Фриза отрицательного порядка с 

самосогласованным источником», с помощью метода обратной задачи 

рассеяния доказывается существование решения уравнения КдФ 

отрицательного порядка с самосогласованным источником. 

Рассмотрим следующую систему уравнений Кортевега-де Фриза 

отрицательного порядка с самосогласованным источником: 
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2

1

2 4 ,

,

, 1,2,..., , 0, .

N

t x m

m

xx

m m m m

u vv
x

v uv

u m N t x



   




  




      





  (2.10) 

В рассматриваемой задаче ( , )m m x t  , 1,2,...,m N  собственная функция 

оператора 
2

2
( ) ( , )

d
L t u x t

dx
   , соответствующая собственному значению 

2( ) ( )m mt t   , 1,2,...,m N  и нормированная условием 

2
( , ) ( )m mx t dx A t





 , 1,2,...,m N    (2.11) 

где ( )mA t , 1,2,...,m N - заданные положительные, непрерывные функции. 

 В данном параграфе исследуется решение задачи Коши для системы 

(2.10) - (2.11) с начальным условием: 

0( ,0) ( )u x u x , x     (2.12) 

где 
0 ( )u x  действительная функция, удовлетворяющая условию: 

1.   01 ( )x u x dx





             (2.13) 

2. Оператор Штурма-Лиувилля 
2

0 02
( )

d
L u x

dx
   , x  имеет N  простых 

отрицательных собственных значений 1(0) , 2 (0) ,…, (0)N .  

Задача (2.10) - (2.12) рассмотривается относительно неизвестных функций 

( , )u x t , ( , )v x t , ( , )m x t , ( )m t , 1,2,...,m N . Предполагается, что функция ),( txu , 

( , )v x t  обладает требуемой гладкостью, достаточно быстро стремится к нулю 

при x  и удовлетворяет условию 

 
( , )

1 ( , )
u x t

x u x t dx
x





  
   

 
    (2.14) 

Основной результат этого параграфа сформулирован в следующей теореме 

Теорема 2.2. Если функции ( , )u x t  и ( , )v x t  являются решениями задачи 

Коши (2.10)-(2.12), то данные рассеяния оператора 
2

2
( ) : ( , )

d
L t u x t

dx
    

меняются по t  следующим образом: 

( , )
( , )

r k t i
r k t

t k




 


, Im 0k  , 

( ) 1
2 ( ) ( )n

n n

n

dB t
A t B t

dt 

 
   
 

, 1,2,...,n N  
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0nd

dt


 , 1,2,...,n N .  

Полученные равенства полностью определяют эволюцию данных 

рассеяния, что позволяет построить алгоритм нахождения решения задачи 

(2.10)-(2.12).  

Теперь приведем пример: 

Пример 2.2. Рассмотрим следующую задачу Коши: 

2

1

2 4 ,

,

, 1,2,..., , 0, .

N

t x m

m

xx

m m m m

u vv
x

v uv

u m N t x



   




  




      





  (2.15) 

при начальной функции 

2

2
( ,0)

ch
u x

x
  .      (2.16) 

Решая прямую задачу для оператора 0L , а именно, находятся данные 

рассеяния:  

1N  , 
( ,0)

( ,0) 0
( ,0)

b k
r k

a k
 

  , 
1(0) 1B  , 

1(0) 1  . 

для оператора 0L . Применяя указанную теорему 2.2, получаем следующие 

данные рассеяния: 
2 ( )( , ) 0, ( ) , 1t

n nr k t B t e      , 

где 

0

1
( ) 2 ( )

2

t

t t A d  
 

   
 

 . 

В результате решения обратной задачи рассеяния находим потенциал 

( , )u x t : 

 2

2
( , )

( )c
u x t

xh t
 


. 

Подставляя найденное решение ( , )u x t  в уравнение (2.15), получим 

соответствующую функцию 
1( , )x t : 

1

2 ( )
( , )

2 ( ( ))

A t
x t

ch x t






. 

В третьей главе диссертации под названием «Интегрирование 

модифицированного уравнения Кортевега-де Фриза в классе 

периодических функций» доказано разрешимость задачи Коши для 

модифицированного уравнения КдФ отрицательного порядка в классе 

периодических функций.  

В первом параграфе третьей главы рассматривается уравнение мКдФ 

отрицательного порядка с нагруженным членом 
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2

2 ( ) (0, ) ,xt t

x

q q t q t q

q

 



  


 
  0,t x  ,                  (3.1) 

со следующими условиями 

0 00 0
( , ) ( ), ( , ) ( ),

t x
q x t q x x t t 

 
    

0
[ ( , ) ( , )] ( )t t x
q x t x t t 


                 (3.2) 

где 
3

0( ) ( )q x C , ( ) [0, )t C   , ( ) [0, )t C   , и 
1

0( ) [0, )t C    заданные 

действительные функции, 0( )q x  имеет период  , а функции ( )t  и ( )t  

ограничены. Требуется найти действительные решения ),( txq  и ( , )x t  задачи 

(3.1) – (3.2), которые удовлетворяют условиям гладкости 
1 1

1 1

( , ) ( 0) ( 0) ( 0),

( , ) ( 0) ( 0) ( 0).

x t

x t

q x t C t C t C t

x t C t C t C t

     

     
    (3.3) 

и следующие условия периодичности по переменной x  

   , ,q x t q x t  ,    , ,t tx t x t    , 0,t x  . 

В рассматриваемой задаче  ( , ) [0, ) [0, )t C       заданная действительная, 

непрерывная функция, имеющая равномерную асимптотику 

 4( , ) 1 ,t O     , 
Ttxtx )),,(),,,(( 21     - решения Флоке 

(нормированные условиями 1),,0(1  t ) следующего уравнения Дирака 

yytx
dx

dy
BytL  ),()( , x ,     (3.4) 

где 































)(

)(
,

0),(

),(0
),(,

01

10

2

1

xy

xy
y

txq

txq
txB .

1

2

( , )

( , )

y x t
y

y x t

 
  
 

 

Через 
Ttxstxstxs )),,(),,,((),,( 21    обозначено решение уравнения (3.4), 

удовлетворяющее начальным условиям 
Tts )1,0(),,0(  . 

Основной результат этого параграфа сформулирован в следующей 

теореме. 

Теорема 3.1. Если набор ( ( , ), ( , )q x t x t ) является решением задачи (3.1)-

(3.3), то спектр оператора (3.4) не зависит от параметра t , а спектральные 

параметры ( ), \ {0}n n t n    удовлетворяют аналогу системы уравнений 

Дубровина-Трубовица: 

1 ( ) (0, )
( 1) ( ) ( ) (0, ) (0, ) , \ {0}

2

n

n n n t t

n

t q t
t h q t t n


   



 
     

 
.        (3.5) 

При этом знаки 1)( tn  меняются при каждом столкновении точки )(tn  

с границами своей лакуны ],[ 212 nn   , и выполняются следующие начальные 

условия 
0 0

0 0
( ) , ( ) , \{0}n n n nt t
t t n   

 
   ,                             (3.6) 

где 
0 0, , \{0}n n n    – спектральные параметры оператора Дирака с 

коэффициентом )(0 xq . 
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В последнем параграфе третьей главы рассмотрим следующее уравнение 

мКдФ отрицательного порядка с интегральным источником 

    1 1 2

2

2 1,2 ,, ,xt t

x

q

q

t s t dq



      



    



   


 





   0,t x  ,  (3.7) 

с условиями 

0 00 0
( , ) ( ), ( , ) ( ),

t x
q x t q x x t t 

 
                  (3.8) 

где 3

0
( )q x C , 

1

0( ) [0, )t C   –заданные действительные функции, причем 

0( )q x  имеет период  . Целью данной работы является нахождение 

действительных периодических по переменной x  функции ),( txq  и ( , )x t , 

( , ) ( , )q x t q x t , 0,t x  , 

( , ) ( , )
t t
x t x t , 0,t x  . 

удовлетворяющих условиям гладкости: 
1 1

1 1

( , ) ( 0) ( 0) ( 0),

( , ) ( 0) ( 0) ( 0).

x t

x t

q x t C t C t C t

x t C t C t C t

     

     
                              (3.9) 

В рассматриваемой задаче  ( , ) [0, ) [0, )t       – заданная 

действительная, непрерывная функция, имеющая равномерную асимптотику 

 4( , ) 1 ,t O     , 
1 2
( ( , , ), ( , , ))Tx t x t  – решения Флоке 

(нормированные условиями 1),,0(1  t ) следующего уравнения Дирака 

yytx
dx

dy
BytL  ),()( , x ,                                  (3.10) 

где 

0 1 0 ( , )
, ( , )

1 0 ( , ) 0

q x t
B x t

q x t
, 

1

2

( , )

( , )

y x t
y

y x t

 
  
 

. 

Через 
Ttxstxstxs )),,(),,,((),,( 21    обозначено решение уравнения (3.10), 

удовлетворяющее начальным условиям 
Tts )1,0(),,0(  . 

В данной работе будет предложен алгоритм построения решения  

( , ), ( , ), ( , , ), ( , , )q x t x t x t x t     
 

задачи (3.7)-(3.9) в рамках обратной спектральной задачи для уравнения 

Дирака (3.10) 

Основной результат этого параграфа сформулирована в следующей 

теореме. 

Теорема 3.2. Пусть набор ( ( , ), ( , ), ( , , ), ( , , )q x t x t x t x t   
) является 

решением задачи (3.7)-(3.9). Тогда спектр оператора (3.10) не зависит от 

параметра t , а спектральные параметры ( ), \ {0}n n t n    удовлетворяют 

аналогу системы уравнений Дубровина-Трубовица: 
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1

2 2

1 ( , ) ( , , )
( ) ( 1) ( ) ( ) (0, ) (0, ) , \{0}n n

n n n t t

n n

t s t
t t h q t t d n

    
    

  





 
     

 
 . 

(9) 

Знаки 1)( tn  меняются при каждом столкновении точки )(tn  с границами 

своей лакуны ],[ 212 nn   . Кроме того, выполняются следующие начальные 

условия 
0 0

0 0
( ) , ( ) , \{0}n n n nt t
t t n   

 
   ,                             (3.11) 

где 
0 0, , \{0}n n n    – спектральные параметры системы Дирака с 

коэффициентом )(0 xq . 
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ЗАКЛЮЧЕНИЕ 

Диссертационная работа посвящена исследованию интегрирования 

уравнения КдФ отрицательного порядка в классе быстроубывающих и 

интегрирования уравнения мКдФ отрицательного порядка в классе 

периодических функций. 

Основные результаты исследования состоят в следующем: 

1) используя метод обратной задачи рассеяния для оператора Штурма-

Лиувилля доказана интегрируемость уравнения КдФ отрицательного порядка в 

классе быстроубывающих функций; 

2) доказана интегрируемость уравнения КдФ отрицательного порядка с 

самосогласованным источником используя метод обратной задачи теории 

рассеяния для оператора Штурма-Лиувилля; 

3) используя метод обратной спектральной задачи для оператора Дирака 

доказана интегрируемость уравнения КдФ отрицательного порядка с 

нагруженным членом и интегральным источником в классе периодических 

функций; 

4) доказано существование и единственность решения задачи Коши для 

системы дифференциальных уравнений Дубровина. 

Полученные результаты подтверждают достижение целей исследования 

диссертации. Все полученные результаты вносят определенный вклад в теорию 

интегрирования нелинейных эволюционных уравнений с помощью метода 

обратных спектральных задач. 
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INTRODUCTION (abstract of the PhD dissertation) 

The purpose of the research: Integration of the negative order Korteweg–de 

Vries (KdV) equation and the negative-order modified Korteweg–de Vries (mKdV) 

equation using the inverse spectral transform method, based on the solution 

techniques for inverse problems for the Sturm–Liouville and Dirac operators. 

The objects of the research: are the study of the negative-order KdV equation 

with a self-consistent source and the negative-order mKdV equation with a loaded 

term and an integral source, within the class of rapidly decreasing and periodic 

functions. 

The scientific novelties of the research are as follow: 

To demonstrate the integrability of the negative order KdV equation in the class 

of rapidly decreasing functions using the inverse scattering transform method for the 

Sturm–Liouville operator; 

To investigate the integrability of the negative order KdV equation with a self-

consistent source via the inverse scattering transform method for the Sturm–Liouville 

operator; 

To prove the well-posedness of the Cauchy problem for the negative order 

mKdV equation with a loaded term and an integral source in the class of periodic 

functions; 

To establish the existence and uniqueness of a global solution for the negative 

order mKdV equation with a loaded term and an integral source in the class of 

periodic functions. 

The practical results of the research are as follows: 

Using the algorithms developed for finding decaying and periodic solutions to 

the Cauchy problem for the negative order KdV and mKdV equations with sources, 

exact soliton and periodic solutions have been constructed; 

Applying the integration algorithm for the negative order KdV and mKdV 

equations in the class of rapidly decreasing and periodic functions, it has been 

discovered that the propagation speed of solitons and periodic waves either increases 

or decreases, while their amplitudes remain unchanged. 

Implementation of the research results. Results of the doctoral dissertation on 

the topic “Integration of Negative Order Korteweg–de Vries Equations and Modified 

Korteweg–de Vries Equations Using Inverse Spectral Problem Methods”, completed 

for the degree of Doctor of Philosophy (PhD) in Physical and Mathematical Sciences, 

were utilized in the fundamental project UT-OT-2020-1 entitled “The Monge-

Ampère Equation and Extremal Plurisubharmonic Functions”. This project was 

carried out at the Mirzo Ulugbek National University of Uzbekistan under the 

supervision of A. Sadullaev from 2020 to 2022. Specifically, the integration 

algorithm for nonlinear evolution equations of negative order, developed in the 

dissertation, was applied to find solutions of the nonlinear homogeneous complex 

Monge–Ampère equation. The application of these scientific results enabled the study 

of spectral properties of the complex Monge-Ampère operator, including the 

characteristics of its eigenvalues and eigenfunctions.  
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The scientific research involved the integration of the negative order KdV 

equation in the class of rapidly decreasing functions via the inverse scattering 

transform method. This approach fundamentally relies on the solution of the inverse 

problem of recovering the potential of a Sturm–Liouville operator on the entire line 

from its scattering data. Analytical solutions were obtained, the properties of solitonic 

structures were investigated, and methods for their analysis in nonlinear evolutionary 

systems were developed. The findings contribute to the theory of integrable systems 

and nonlinear partial differential equations.  

Furthermore, the results were employed by researchers from the Department of 

Differential Equations at the Faculty of Mechanics and Mathematics of Novosibirsk 

State University (NSU) in their work on the Russian Foundation for Basic Research 

(RFBR) grant No. 18-29-10086, titled “High-Dimensional Systems of Differential 

Equations and Equations with Delay. Theory and Applications” (2018–2022). These 

results proved valuable for theoretical investigations and algorithm development. The 

obtained outcomes facilitated the consideration of new problems for nonlinear 

equations with delay and classes of large-dimensional systems of differential 

equations. 

Approbation of the research results. The results of this research were 

discussed at 5 scientific and practical conferences, including 2 international and 3 

republican conferences. 

Publication of the research results. 5 scientific papers were published on the 

topic of the dissertation, of which 5 papers were published in scientific publications 

recommended by the Higher Attestation Commission of the Republic of Uzbekistan 

for the defense of Doctor of Philosophy dissertations, including 3 in foreign and 2 in 

republican journals. 

The formation and the volume of the dissertation. The dissertation consists of 

an introduction, three chapters, a conclusion and a list of references. The volume of 

the dissertation is 87 pages. 
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