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KIRISH (falsafa doktori (PhD) dissertatsiyasi annotatsiyasi) 
 

Dissertatsiya mavzusining dolzarbligi va zarurati. Jahonda olib borilayotgan 
ko‘plab ilmiy-amaliy tadqiqotlar aksariyat hollarda zamonaviy matematikaning muhim 
va dolzarb yo‘nalishlaridan biri bo‘lgan nochiziqli evolyutsion tenglamalarni tadqiq 
qilishga keltiriladi. Hozirgi kunda anomal diffuziya va fraksional dispersiya hodisalari 
ko‘plab fizik va texnologik jarayonlarda kuzatilayotgani sababli, moslangan manbali 
butun va kasr tartibli xususiy hosilali nochiziqli evolyutsion tenglamalarni o‘rganish 
nafaqat nazariy, balki amaliy jihatdan ham nihoyatda muhim tadqiqot yo‘nalishlaridan 
biri hisoblanadi. Bu yo‘nalish fundamental matematika, kompyuter simulyatsiyasi va 
eksperimental fizika o‘rtasidagi o‘zaro bog‘liqlikni mustahkamlab, yangi turdagi 
solitonlar, dispersiv effektlar va integrallanuvchi tenglamalar sinfini aniqlash imkonini 
beradi. Bundan tashqari bu masalalardan plazma fizikasi, optika, gidrodinamika, 
biotibbiyot, geofizika, anomal issiqlik tarqalishi, bozor modellaridagi inertsiya 
effektlari kabi ko‘plab sohalarni tadqiq qilishda foydalanish muhim ahamiyatga ega 
hisoblanadi. 

Hozirgi vaqtda manbali nochiziqli evolyutsion tenglamalarni integrallash 
bo‘yicha dunyo miqyosida keng ko‘lamli tadqiqotlar olib borilmoqda. Odatda, 
manbasiz tenglamalar ideal sharoitlarda chiqarilgan model tenglamalar bo‘lib, tabiiy 
jarayonlarda yuzaga keladigan qo‘shimcha ta’sirlarni hisobga olish zarurati mavjud 
hisoblanadi. Bunday hollarda nochiziqli evolyutsion tenglamalarni o‘rganishda 
o‘zgaruvchan koeffitsiyentli va moslangan manbali tenglamalarni kiritish talab etiladi. 
Shu sababli, ushbu jarayonlarning matematik modellari sifatida o‘zgaruvchan 
koeffitsiyentli va moslangan manbali nochiziqli evolyutsion tenglamalar qaraladi. 
Xususan, o‘zgaruvchan koeffitsiyentli modifitsirlangan Burgers tenglamasi va 
qo‘shimcha hadli kasr tartibli hosilali Korteveg-de Friz va modifitsirlangan Korteveg-
de Friz tenglamalarini funksional o‘zgaruvchilar usuli yordamida tatqiq etish, Riss kasr 
tartibli hosilali modifitsirlangan Korteveg-de Friz-sinus-Gordon tenglamasini sochilish 
nazariyasining to‘g‘ri va teskari masalalar usuli yordamida integrallash, o‘zgaruvchan 
koeffitsiyentli va moslangan manbali umumiy Kaup-Boussinesq tenglamasini tez 
kamayuvchi funksiyalar sinfida integrallash masalalariga jahon miqiyosida alohida 
e’tibor berilmoqda. 

Respublikamizda kasr tartibli va moslangan mabali nochiziqli evolyutsion 
tenglamalarning yechimlarini Zaxarov-Shabat sistemasi va Shturm-Liuvill operatorlari 
kvadratik dastasi uchun qoʻyilgan sochilish nazariyasining toʻgʻri va teskari masalalar 
usullari yordamida aniqlash va ularni amaliyotga tatbiq etish bo‘yicha keng ko‘lamli 
ishlar amalga oshirilmoqda. Xususan, sochilish nazariyasining to‘g‘ri va teskari 
masalalari usullaridan foydalanib Riss kasr tartibli hosilali modifitsirlangan Korteveg-
de Friz va umumiy Kaup-Boussinesq tenglamalarining soliton yechimlarini qurish 
boʻyicha muhim natijalarga erishildi. Differensial tenglamalar, matematik fizika va 
funksional analiz fanlarining ustuvor yo‘nalishlari bo‘yicha xalqaro standartlar 
darajasida ilmiy tadqiqotlar olib borish matematika fanining asosiy vazifalari va 
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faoliyat yo‘nalishlari qilib belgilangan1. Ushbu vazifalarni amalga oshirishda, xususan 
zamonaviy matematik fizikaning nochiziqli evolyutsion tenglamalarni integrallashda 
sochilish nazariyasining to‘g‘ri va teskari masalalari usulini qoʻllab, tez kamayuvchi 
funksiyalar sinfida Riss kasr tartibli hosilali modifitsirlangan Korteveg-de Friz-sinus-
Gordon tenglamasini Zaxarov-Shabat sistemasi uchun qo‘yilgan sochilish 
nazariyasining to‘g‘ri va teskari masalalar usuli yordamida, shuningdek o‘zgaruvchan 
koeffitsiyentli va moslangan manbali umumiy Kaup-Boussinesq tenglamasini Shturm-
Liuvill operatorlari kvadratik dastasi uchun uchun qo‘yilgan sochilish nazariyasining 
to‘g‘ri va teskari masalalar usuli yordamida integrallash muhim ahamiyat kasb 
etmoqda. 

Oʻzbekiston Respublikasi Prezidentining 2020-yil 29-oktabrdagi PF-6097-sonli 
“Ilm-fanni 2030-yilgacha rivojlantirish Konsepsiyasini tasdiqlash to‘g‘risida”gi va 
2022-yil 28-yanvardagi PF-60-sonli “2022-2026-yillarga mo‘ljallangan Yangi 
O‘zbekistonning taraqqiyot strategiyasi to‘g‘risida”gi Farmonlari, 2019-yil 9-iyuldagi 
PQ-4387-sonli “Matematika ta’limi va fanlarini yanada rivojlantirishni davlat 
tomonidan qo‘llab-quvvatlash, shuningdek, O‘zbekiston Respublikasi Fanlar 
akademiyasining V.I. Romanovskiy nomidagi Matematika instituti faoliyatini tubdan 
takomillashtirish chora-tadbirlari to‘g‘risida”gi va 2020-yil 7-maydagi PQ-4708-sonli 
“Matematika sohasidagi ta’lim sifatini oshirish va ilmiy tadqiqotlarni rivojlantirish 
chora-tadbirlari to‘g‘risida”gi Qarorlari hamda ushbu faoliyat sohasiga oid boshqa 
me’yoriy-huquqiy hujjatlarda belgilangan vazifalarni amalga oshirishda ushbu 
dissertatsiya tadqiqoti muayyan darajada xizmat qiladi. 

Tadqiqotning respublika fan va texnologiyalari rivojlanishi ustuvor 
yo‘nalishlariga bog‘liqligi. Ushbu dissertatsiya ishidagi izlanish va tadqiqotlar 
O‘zbekiston Respublikasida fan va texnika taraqqiyotining IV. “Matematika, 
mexanika va informatika” ustuvor yo‘nalishiga muvofiq olib borildi.  

Muammoni o‘rganilganlik darajasi. O‘zgarmas koeffitsiyentli nochiziqli 
evolyutsion tenglamalarning funksional o‘zgaruvchilar usuli yordamida davriy va 
soliton yechimlarini topish ilk bor 2010-yilda V. Djoudi va A. Zerarka tomonidan 
kiritilgan bo‘lib, keyinchalik Li va He tomonidan bu usul kasr tartibli differensial 
tenglamalarning davriy va soliton yechimlarini topishda qo‘llanilgan. 2016-yilda V. 
Djoudi va A. Zerarka ushbu usulni rivojlantirib, o‘zgaruvchan koeffitsiyentli 
Korteveg-de Friz tenglamasi va modifitsirlangan Korteveg-de Friz tenglamalarining 
davriy va soliton yechimlarini funksional o‘zgaruvchilar usuli yordamida qurishga 
muvaffaq bo‘ldilar. Funksional o‘zgaruvchilar usulining boshqa usullardan asosiy 
ustunligi shundaki, bu usul yordamida parametrlarga aniq qiymat berish orqali ko‘proq 
yangi yechimlarni olish mumkin. 

So‘nggi yillarda butun va kasr tartibli nochiziqli evolyutsion tenglamalarni 
sochilish nazariyasining to‘g‘ri va teskari masalalar usuli yordamida integrallash 
bo‘yicha keng ko‘lamli tadqiqotlar olib borilmoqda. Xususan, butun tartibli hosilali 
modifitsirlangan Korteveg-de Friz-sinus-Gordon tenglamasi ilk bor 1974-yilda K. 

                                              
1O‘zbekiston Respublikasi Vazirlar Mahkamasining 2017-yil, 18-maydagi 292-sonli “O‘zbekiston Respublikasi Fanlar 
akademiyasining yangidan tashkil etilgan ilmiy-tadqiqot muassasalari faoliyatini tashkil etish chora-tadbirlari 
to‘g‘risida”gi qarori. 
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Konno tomonidan atom panjarasidagi nochiziqli tebranish hodisalarini ifodalovchi 
matematik model sifatida kiritilgan va sochilish nazariyasining to‘g‘ri va teskari 
masalalar usuli yordamida to‘la integrallanuvchanligi ko‘rsatilgan. Keyinchalik, bu 
tenglama H. Leblond va D. Mihalache tomonidan shaffof muhitlarda qisqa optik 
impulslarning tarqalishini tasvirlashda qo‘llanilgan. Shuningdek, bu tenglamaning 
davriy cheksiz zonali yechimlari A. Hasanov tomonidan, tez kamayuvchi funksiyalar 
sinfidagi yechimlari esa U. Hoitmetov tomonidan o‘rganilgan. 

2022-yilda Amerikalik olimlar Ablovitz, Been va Carrlar Riss kasr tartibli 
nochiziqli Korteveg-de Friz tenglamasini sochilish nazariyasining to‘g‘ri va teskari 
masalalar usuli yordamida integrallash mumkinligini ko‘rsatdilar va bu usulni Riss 
kasr tartibli nochiziqli Shrodinger tenglamasi, Riss kasr tartibli hosilali 
modifitsirlangan Korteveg-de Friz tenglamasi, Riss kasr tartibli hosilali sinus-Gordon 
tenglamasi integrallashga qo‘lladilar. Ular tomonidan taklif etilgan bu usul hozirgi 
kunda ko‘plab kasr tartibli hosilali nochiziqli evolyutsion tenglamalarni integrallashga 
tadbiq etilmoqda. Jumladan, xitoylik olimlar V. Weng, M. Zhang va Z. Yanlar 
tomonidan bu usul yordamida Riss kasr tartibli hosilali nochiziqli Shrodinger 
tenglamasining umumlashmalari integrallangan va N-soliton yechimlarining 
dinamikasi o‘rganilgan. L. An, L. Ling va H. Zhang esa Riss kasr tartibli hosilali 
nochiziqli hosilali Shrodinger tenglamasi va Riss kasr tartibli Hirota tenglamasining 
soliton yechimlarini olganlar. SH. Zhang, H. Li va B. Xu esa Riss kasr tartibli hosilali 
o‘zgaruvchan koeffitsiyentli Korteveg-de Friz va nochiziqli Shrodinger tenglamasini 
sochilish nazariyasining to‘g‘ri va teskari masalalar usuli yordamida integrallash 
mumkinligini ko‘rsatganlar. 

Shturm-Liuvill operatorining kvadratik dastasi uchun sochilish nazariyasining 
to‘g‘ri va teskari masalalar usuli yordamida D. J. Kaup sayoz suvda to‘lqin tarqalishini 
tasvirlovchi Kaup-Boussinesq tenglamasini tez kamayuvchi funksiyalar sinfida to‘liq 
integrallanishini ko‘rsatgan. Keyinchalik, M. Jaulent va I. Miodek Kaup-Boussinesq 
tenglamasi va uning yuqori tartibli analoglari uchun Koshi masalasini yechish 
algoritmini ishlab chiqdilar. V. B. Matveev va M. I. Yavor Kaup-Boussinesq 
tenglamasini chegaralangan zona tipidagi boshlang‘ich shartlar bilan o‘rgangan bo‘lib, 
murakkab ko‘p zonali yechimlarini topganlar va ularning assimptotik xossalarini tahlil 
qildilar. Kaup-Boussinesq tenglamasining haqiqiy ko‘p zona yechimlari A. O. Smirnov 
ishlarida tadqiq qilingan.  

Bundan tashqari, A. Cabada va A. Yakshimuratov davriy funksiyalar sinfida 
moslangan manbali Kaup-Boussinesq tenglamasini integrallab, yechimlarning 
davriylik xususiyatlari va o‘zgaruvchilarga nisbatan analitikligini aniqlash bo‘yicha 
muhim natijalarni oldilar. Shuningdek, B.A. Babajanov va A.Sh. Azamatovlar 
moslangan manbali Kaup-Boussinesq tenglamasining integrallanuvchanligini Shturm-
Liuvill tenglamalarining kvadratik dastasi uchun sochilish nazariyasining teskari 
masalalari usuli yordamida asoslab berganlar. 

Dissertatsiya tadqiqotining dissertatsiya bajarilgan oliy ta’lim 
muassasasining ilmiy-tadqiqot ishlari rejalari bilan bog‘liqligi. Ushbu dissertatsiya 
ishi Xorazm Ma’mun akademiyasi “Aniq fanlar” bo‘limining ilmiy-tadqiqot ishlari 
rejasiga muvofiq “Differensial operatorlar spektral nazariyasining nochiziqli 
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evolyutsion tenglamalarga tadbiqlari” nomli ilmiy-tadqiqot ishlari rejasi (2022-2025 
yillar) asosida amalga oshirilgan.  

Tadqiqotning maqsadi funksional o‘zgaruvchilar usuli yordamida qo‘shimcha 
hadli va o‘zgaruvchan koeffitsiyentli modifitsirlangan Burgers tenglamasini, 
qo‘shimcha hadli kasr tartibli hosilali Korteveg-de Friz tenglamasini va kasr tartibli 
hosilali modifitsirlangan Korteveg-de Friz tenglamasining soliton va davriy 
yechimlarini topish, Riss kasr tartibli hosilali modifitsirlangan Korteveg-de Friz-sinus-
Gordon tenglamasini sochilish nazariyasining to‘g‘ri va teskari masalalar usuli 
yordamida tadqiq etish va o‘zgaruvchan koeffitsiyentli va moslangan manbali umumiy 
Kaup-Boussinesq tenglamasini tez kamayuvchi funksiyalar sinfida integrallashdan 
iborat. 

Tadqiqotning vazifalari: qo‘shimcha hadli va o‘zgaruvchan koeffitsiyentli 
modifitsirlangan Burgers tenglamasini, qo‘shimcha hadli kasr tartibli hosilali 
Korteveg-de Friz tenglamasi va kasr tartibli hosilali modifitsirlangan Korteveg-de Friz 
tenglamasini funksional o‘zgaruvchilar usuli yordamida soliton yechimlarini topish; 

Riss kasr tartibli hosilali modifitsirlangan Korteveg-de Friz-sinus-Gordon 
tenglamasini Zaxarov-Shabat sistemasi uchun qo‘yilgan sochilish nazariyasining 
to‘g‘ri va teskari masalalar usuli yordamida integrallash; 

o‘zgaruvchan koeffitsiyentli va moslangan manbali umumiy Kaup-Boussinesq 
tenglamasini Shturm-Liuvill operatorlari kvadratik dastasi uchun uchun qo‘yilgan 
sochilish nazariyasining to‘g‘ri va teskari masalalar usuli yordamida integrallash. 

Tadqiqot obyekti: qo‘shimcha hadli va o‘zgaruvchan koeffitsiyentli 
modifitsirlangan Burgers tenglamasi, qo‘shimcha hadli kasr tartibli hosilali Korteveg-
de Friz tenglamasi va kasr tartibli hosilali modifitsirlangan Korteveg-de Friz 
tenglamasi, Riss kasr tartibli hosilali modifitsirlangan Korteveg-de Friz-sinus-Gordon 
tenglamasi, o‘zgaruvchan koeffitsiyentli va moslangan manbali umumiy Kaup-
Boussinesq tenglamasi. 

Tadqiqot predmeti Zaxarov-Shabat sistemasi va Shturm-Liuvill operatorlari 
kvadratik dastasi uchun sochilish nazariyasining to‘g‘ri va teskari masalalar usulini 
butun va kasr tartibli hosilali nochiqli evolyutsion tenglamalarni integrallash 
jarayoniga tatbiq etishdan iborat. Bundan tashqari, qo‘shimcha hadli va o‘zgaruvchan 
koeffitsiyentli bir qator nochiziqli evolyutsion tenglamalar uchun aniq analitik 
yechimlarni olish maqsadida funksional o‘zgaruvchi usulining qo‘llanilishi ham 
o‘rganilgan. 

Tadqiqotning usullari. Dissertatsiya ishida matematik analiz, oddiy va xususiy 
hosilali differensial tenglamalar nazariyasi, matematik fizika tenglamalari, funksional 
analiz, kompleks o‘zgaruvchili funksiyalar nazariyasi hamda differensial 
operatorlarning spektral nazariyasi kabi zamonaviy matematik metod va yondashuvlar 
qo‘llanildi. 

Tadqiqotning ilmiy yangiligi quyidagilardan iborat:  
funksional o‘zgaruvchilar usuli yordamida qo‘shimcha hadli va o‘zgaruvchan 

koeffitsiyentli modifitsirlangan Burgers tenglamasi, qo‘shimcha hadli kasr tartibli 
hosilali Korteveg-de Friz tenglamasi va kasr tartibli hosilali modifitsirlangan 
Korteveg-de Friz tenglamasining soliton va davriy yechimlari topilgan; 
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Riss kasr tartibli hosilali modifitsirlangan Korteveg-de Friz-sinus-Gordon 
tenglamasi Zaxarov-Shabat sistemasi uchun qo‘yilgan sochilish nazariyasining to‘g‘ri 
va teskari masalalar usulini yordamida tez kamayuvchi funksiylar sinfida 
integrallanuvchanligi isbotlangan; 

o‘zgaruvchan koeffitsiyentli va moslangan manbali umumiy Kaup-Boussinesq 
tenglamasi Shturm-Liuvill operatorlari kvadratik dastasi uchun qo‘yilgan sochilish 
nazariyasining to‘g‘ri va teskari masalalar usuli yordamida tez kamayuvchi funksiylar 
sinfida integrallanuvchanligi isbotlangan. 

Tadqiqotning amaliy natijalari: funksional o‘zgaruvchilar usuli yordamida 
qo‘shimcha hadli va o‘zgaruvchan koeffitsiyentli modifitsirlangan Burgers tenglamasi, 
qo‘shimcha hadli kasr tartibli hosilali Korteveg-de Friz tenglamasi va kasr tartibli 
hosilali modifitsirlangan Korteveg-de Friz tenglamasining soliton va davriy yechimlari 
topilgan. Ushbu yechimlar muhitlardagi dispersiv o‘zaro ta’sirlarni chuqur yoritib 
beradi va ular turbulentlik, gaz dinamikasi hamda nochiziqli diffuziya modellarida 
to‘g‘ridan-to‘g‘ri qo‘llanishi mumkin.  

Riss kasr tartibli hosilali modifitsirlangan Korteveg-de Friz-sinus-Gordon 
tenglamasi Zaxarov-Shabat sistemasi uchun sochilish nazariyasining to‘g‘ri va teskari 
masalalar usulini yordamida integrallash algoritmi ishlab chiqilgan. Ushbu natijalar 
kasr tartibli hosilali nochiziqli to‘lqin jarayonlarini tahlil qilish uchun samarali 
hisoblanadi.  

O‘zgaruvchan koeffitsiyentli va moslangan manbali umumiy Kaup-Boussinesq 
tenglamasi Shturm-Liuvill operatorlari kvadratik dastasi uchun sochilish 
nazariyasining to‘g‘ri va teskari masalalar usuli yordamida integrallash algoritmi 
qurilgan va vaqt bo‘yicha evolyutsiyasini ifodalovchi aniq formulalar olingan. 

Tadqiqot natijalarining ishonchliligi: qo‘yilgan vazifalarni o‘rganishda 
matematik fizika tenglamalari, funksional tahlil va kompleks o‘zgaruvchili funksiyalar 
nazariyasi, shuningdek Zaxarov-Shabat sistemasining spektral xususiyatlari va 
Shturm-Liuvill operatorlari kvadratik dastasi uchun sochilish nazariyasining teskari 
masalalar usuli kabi zamonaviy analitik usullardan foydalanilganligi bilan 
ta’minlanadi. Barcha teoremalar va natijalar qat’iy matematik asoslash, aniq isbotlar, 
spektral tahlilning fundamental prinsiplariga tayanilgan holda chiqarilgan bo‘lib, 
ularning to‘g‘riligi tekshirilib, klassik natijalar bilan solishtirish asosida tasdiqlangan. 

Tadqiqot natijalarining ilmiy va amaliy ahamiyati. Ushbu dissertatsiyada 
olingan asosiy natijalar chiziqli operatorlarning spektral nazariyasi doirasida, 
shuningdek qattiq jismlar fizikasi, ion akustikasi, plazma fizikasi, radiofizika va kvant 
fizikasidagi turli masalalarni tahlil qilishda qo‘llanishi mumkin va ishlab chiqilgan 
nazariy yondashuvlar va analitik usullarni matematik fizikaning moslangan manbali 
nochiziqli evolyutsion tenglamalarini integrallash jarayonida qo‘llash imkoniyati bilan 
belgilanadi. 

Tadqiqot natijalarining joriy qilinishi. 
Moslangan manbali butun va kasr tartibli hosilali xususiy hosilali nochiziqli 

evolyutsion tenglamalarni integrallash bo‘yicha olingan natijalar asosida: 
Qo‘shimcha hadli va o‘zgaruvchan koeffitsiyentli modifitsirlangan Burgers 

tenglamasining soliton yechimlari va kasr tartibli hosilali modifitsirlangan Korteveg-
de Friz-sinus-Gordon tenglamasini Zaxarov-Shabat sistemasiga qo‘yilgan sochilish 
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nazariyasining to‘g‘ri va teskari masalalar usuli yordamida integrallash orqali olingan 
bir solitonli yechimlarning xossalari Muhammad al-Xorazmiy nomidagi Toshkent 
axborot texnologiyalari universiteti Urganch filialida fizika-matematika fanlari doktori 
A.B. Yaxshimuratov rahbarligida 2022-2023 yillar davomida bajarilgan AL-42101210 
- “Aqlli shahar sensori infratuzilmasining monitoring tizimi” mavzusidagi amaliy 
tadqiqot loyihasida foydalanilgan(Abu Rayhon Beruniy nomidagi Urganch davlat 
universitetining maʻlumotnomasi, O‘zbekiston, 2025-yil 5-noyabr). Kasr tartibli 
hosilali modifitsirlangan Korteveg-de Friz-sinus-Gordon tenglamasini Zaxarov-Shabat 
sistemasiga qo‘yilgan sochilish nazariyasining to‘g‘ri va teskari masalalar usuli 
yordamida integrallash orqali olingan bir solitonli yechimlarning xossalari 
signallarning xususiyatlarini o‘zgartirmasdan uzatishda qo‘llanilgan. Shuningdek, 
o‘zgaruvchan koeffitsiyentli modifitsirlangan Burgers tenglamasining soliton 
yechimlari sensor tarmoqlarida shovqin kuchayishi va signal buzilishini kamaytirish 
hamda signal amplitudasi va uzatish tezligini samarali boshqarishda qo‘llanilgan. Ilmiy 
natijalarning qo‘llanilishi binolarda yong‘in mavjudligini baholashda zarur bo‘lgan 
dasturiy ta’minotni ishlab chiqish hamda ma’lumotlarni uzatish tarmog‘idagi yukni 
kamaytirish imkonini bergan. 

Umumiy Kaup-Boussinesq tenglamasini sochilish nazariyasining to‘g‘ri va 
teskari masalalar usuli yordamida integrallash orqali olingan ilmiy natijalari Abu 
Rayhon Beruniy nomidagi Urganch davlat universitetida A.E. Atamuratov rahbarligida 
2021-2023 yillar davomida bajarilgan Uzb-Ind-2021-80 raqamli “Zatvor bilan o‘ralgan 
tartiblangan nanoplastinkalar asosidagi MOYA tranzistorda o‘z-o‘zidan qizish 
effektini o‘rganish” mavzusidagi fundamental loyihasida foydalanilgan(Abu Rayhon 
Beruniy nomidagi Urganch davlat universitetining maʻlumotnomasi, O‘zbekiston, 
2025-yil 5-noyabr). Kaup-Boussinesq sistemasini sochilish nazariyasining to‘g‘ri va 
teskari masalalar usuli yordamida integrallash orqali olingan ilmiy natijalari 
nanoplastinkali MOYA tranzistor kanali markazida yuzaga keladigan maksimal 
haroratni nazariy asoslash, tranzistordagi lokal issiqlik to‘planish mexanizmini 
matematik jihatdan tavsiflash, shuningdek, issiqlik oqimi, oqim zichligi, Ion/Ioff nisbati 
va konstruktiv-geometrik parametrlar o‘rtasidagi modellashtirish algoritmlarini ishlab 
chiqishda qo‘llanilgan. Ilmiy natijalarning qo‘llanilishi tranzistorning ichki faol 
sohalarida o‘z-o‘zidan qizish jarayonining boshlanishi va rivojlanishini matematik 
asoslangan holda tushuntirish, lokal issiqlik to‘planishini oldindan baholash, 
konstruktiv-geometrik parametrlar bilan issiqlik tarqalish o‘rtasidagi bog‘liqlikni 
aniqlash, shuningdek, tranzistorlarning barqaror ishlashi uchun optimal struktura 
parametrlarini tanlashni ta’minlovchi hisoblash va simulyatsiya usullarini ishlab 
chiqish imkonini bergan. 

Tadqiqot natijalarining aprobatsiyasi. Dissertatsiyaning asosiy mazmuni 7 ta 
ilmiy-amaliy konferensiyalarda, shu jumladan 6 ta xalqaro va 1 ta respublika ilmiy-
amaliy konferensiyalarda muhokama qilingan.  

Tadqiqot natijalarining e’lon qilinganligi. Dissertatsiya mavzusida 14 ta ilmiy 
ish chop qilingan bo‘lib, dissertatsiyalarining asosiy ilmiy natijalarini nashr etish uchun 
O‘zbekiston Respublikasi Oliy ta’lim, fan va innovatsiyalar vazirligi huzuridagi Oliy 
attestatsiya komissiyasi tomonidan tavsiya etilgan ilmiy nashrlarda 7 ta maqola, shu 
jumladan 6 tasi xorijiy va 1 tasi respublika jurnallarida chop qilingan.  
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Dissertatsiyaning hajmi va tuzilishi. Dissertatsiya kirish, uchta bob, xulosa va 
foydalanilgan adabiyotlar ro‘yxatidan iborat. Dissertatsiyaning hajmi 102 betni tashkil 
qiladi.  
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DISSERTATSIYANING ASOSIY MAZMUNI 

Kirish qismida dissertatsiya mavzusining dolzarbligi va zarurati asoslangan, 
tadqiqotning Respublika fan va texnologiyalari rivojlanishining ustuvor 
yo‘nalishlariga mosligi ko‘rsatilgan, muammoning o‘rganilganlik darajasi keltirilgan, 
dissertatsiya bajarilgan oliy ta’lim muassasasining ilmiy-tadqiqot ishlari rejalari bilan 
bog‘liqligi, tadqiqot maqsadi, vazifalari, ob’yekti, predmeti va usullari tavsiflangan, 
tadqiqotning ilmiy yangiligi va amaliy natijalari bayon qilingan, olingan natijalarning 
nazariy va amaliy ahamiyati ochib berilgan, tadqiqot natijalarining joriy qilinishi, nashr 
etilgan ishlar va dissertatsiya tuzilishi bo‘yicha ma’lumotlar keltirilgan. 

Dissertatsiyaning “Butun va kasr tartibli hosilali nochiziqli evolyutsion 
tenglamalarning soliton va davriy to‘lqin yechimlarini funksional o‘zgaruvchilar 
usuli yordamida topish” deb nomlangan birinchi bobida, qo‘shimcha hadli va 
o‘zgaruvchan koeffitsiyentli modifitsirlangan Burgers tenglamasi, qo‘shimcha hadli 
kasr tartibli hosilali Korteveg-de Friz tenglamasi va kasr tartibli hosilali 
modifitsirlangan Korteveg-de Friz tenglamasining soliton va davriy yechimlari 
topilgan.  

Bu bobning birinchi paragrafida funksional o‘zgaruvchilar usulining matematik 
mohiyati, uning qo‘llanish shartlari, bazaviy tushunchalari va yechimlarni qurishdagi 
afzalliklari batafsil tushuntirilgan.  

Bu bobning ikkinchi paragrafida qo‘shimcha hadli va o‘zgaruvchan 
koeffitsiyentli modifitsirlangan Burgers tenglamasini funksional o‘zgaruvchilar usuli 
yordamida yechimlari topilgan.  

Bu bobning uchinchi paragrafida qo‘shimcha hadli kasr tartibli hosilali Korteveg-
de Friz tenglamasi va kasr tartibli hosilali modifitsirlangan Korteveg-de Friz 
tenglamalarining soliton va davriy to‘lqin yechimlari qurilgan. Shuningdek, funksional 
o‘zgaruvchilar usulining kasr tartibli hosilali modellar uchun qanchalik samarali 
ishlashi nazariy jihatdan asoslab berilgan. 

Quyidagi nochiziqli differensial tenglamani qaraymiz. 

( , , , , , , , , ) 0t x y z xy yz xzP u u u u u u u u   ,    (1) 

1-qadam. Nochiziqli xususiy hosilali tenglamani oddiy differensial tenglamaga 
keltirish maqsadida quyidagi chiziqli almashtirishni kiritamiz: 

0

p

i i
i

   


  ,      (2) 

bu yerda i  erkli o‘zgaruvchilar. Agar 1p   bo‘lsa, u holda 0 0 1 1       
ko‘rinishga ega bo‘ladi. 0  va 1  o‘zgarmas sonlar bo‘lib, ular to‘lqin pulsatsiyasi 

sifatida talqin qilinadi, 0  va 1  esa mos ravishda vaqt t  va fazoviy koordinata x  
o‘zgaruvchilarini bildiradi. 

(1) tenglamaning yechimlarini izlashda quyidagi almashtirishni kiritamiz: 

0 1( , , ) ( )u u    ,      
va zanjir qoidasiga binoan quyidagi tengliklar o‘rinli bo‘ladi: 
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2 2

2
, ,i i j

i i j

u du u d u

d d
 

    
 

  
  

,   (3) 

(2) va (3) almashtirishlardan foydalanib (1) nochiziqli xususiy hosilali differensial 
tenglama oddiy differensial tenglamaga keltiriladi. Natijada quyidagi ko‘rinishdagi 
tenglama hosil bo‘ladi: 

( , , , , ) 0Q u u u u    ,     (4) 
bu yerda Q  funksional u  noma’lum funksiya va uning   bo‘yicha hosilalariga bog‘liq 

va 
du

u
d

  . 

2-qadam. Keyingi soddalashtirish bosqichida maxsus funksional almashtirish 
kiritiladi: 

( )u F u  ,      (5) 
Kiritilgan funksional almashtirish natijasida yechim quyidagi integral munosabat 

orqali aniqlanadi: 

( )

du
C

F u
  ,      

bu yerda C  integrallash doimiysi bo‘lib, qulaylik uchun odatda 0C   deb olinadi. 
Mazkur bosqich funksional o‘zgaruvchilar usulining asosiy g‘oyasini tashkil etadi. u  
noma’lum funksiyaning   bo‘yicha yuqori tartibli hosilalarini ( )F u  yordamida 
ifodalash uchun (5) funksional almashtirishdan foydalanib, u  funksiyaning yuqori 
tartibli hosilalari hisoblanadi: 

 

 

     

2

2 2

2

2

3 2 2 2 2

( ) 2

3 2

( )( ) ( ) 1
( ) ,

2

( )1
( ),

2

( ) ( ) ( )1
( ) ,

2

..................................................................

IV

d F udF u du dF u
u F u

du d du du

d F u
u F u

du

d F u d F u d F u
u F u

du du du


   

 

 
  

  


  (6) 

3-qadam. (4) oddiy differensial tenglamani u , ( )F u  va uning hosilalari orqali 
ifodalash uchun (5) va (6) tengliklardan foydalanamiz. Ushbu ifodalarni (4) ga qo‘yish 
natijasida tenglama quyidagi ko‘rinishga keltiriladi: 

2 3

2 3

( ) ( ) ( )
, , , , 0
dF u d F u d F u

R u
du du du

   
 

.    (7) 

(7) tenglamani integrallash natijasida ( )F u  funksiyasining aniq ifodasi olinadi va (5) 
tenglama bilan birgalikda qarab, qaralayotgan masalaning yechimlari hosil qilinadi. 

Bu bobning ikkinchi paragrafida qo‘shimcha hadli va o‘zgaruvchan 
koeffitsiyentli modifitsirlangan Burgers tenglamasini funksional o‘zgaruvchilar usuli 
yordamida aniq yechimlari topilgan. Taklif qilinayotgan usulning boshqa usullarga 
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nisbatan asosiy ustunligi shundaki, bu usul yordamida tenglamaning yanada ko‘proq 
yangi yechimlarni olish mumkin. 

Quyidagi qo‘shimcha hadli va o‘zgaruvchan koeffitsiyentli modifitsirlangan 
Burgers tenglamasini qaraymiz 

2

1 2( ) ( ) ( ) 0t x xx xu h t u u h t u t u    ,    (8) 
bu yerda ( , )u x t  noma’lum funksiya, x , 0t  , 1( ) 0h t  , 2 ( ) 0h t   va ( ) 0t   
berilgan uzluksiz differensiallanuvchi funksiyalar va 2 ( ) 0h t   suyuqlikning kinematik 
qovushqoqlik koeffitsiyentini ifodalaydi. 

1-teorema. Faraz qilaylik 1( ) 0h t  , 2 ( ) 0h t   va ( ) 0t   funksiyalar uzluksiz 
differensiallanuvchi funksiyalar bo‘lib, ular quyidagi tenglikni qanoatlantirsin: 

2

2

4 1
42

2

1 3
0

( )
( )

3
( )

Ct

C h t
h t

C
h d C


 

 
  
 


. 

U holda, (8) qo‘shimcha hadli va o‘zgaruvchan koeffitsiyentli modifitsirlangan 
Burgers tenglamasining yechimi quyidagi ko‘rinishga ega bo‘ladi: 

1

2

( , )4
1

2

1 3 1 3
0 0

1
( , ) sh arcth

( ) ( )
( ( ))

( )
H x t

t t
C

C
u x t e

h d C h d C   
 

  
,  

bu yerda 2

1 2 2 2 1 2
0

( , ) ( ) ( )( )
t

H x t C h C d C C x        ,  ,  , 1C , 2C , va 3C  noldan 

farqli o‘zgarmas sonlar. 
2-teorema. Faraz qilaylik 1( ) 0h t  , 2 ( ) 0h t   va ( ) 0t   funksiyalar uzluksiz 

differensiallanuvchi funksiyalar bo‘lib, ular quyidagi tenglikni qanoatlantirsin: 

2 1( ) ( )h t k h t , constk  . 

U holda, (8) qo‘shimcha hadli va o‘zgaruvchan koeffitsiyentli modifitsirlangan 
Burgers tenglamasining yechimi quyidagi ko‘rinishga ega bo‘ladi: 

2 ( , )

2 3( , ) sh arcth( )( )H x tu x t S e .    

bu yerda 2

2 2 2 2 1 2
0

( , ) ( ) ( )( )
t

H x t S h S d S S x        ,  , 1S , 2S , va 3S  noldan farqli 

o‘zgarmas sonlar. 
1-misol. 1-teoremaning qo‘llanilishini quyidagi misol yordamida ko‘rib 

chiqamiz. Agar 1( ) 2h t t , 2 2
( )

1

t
h t

t



, ( ) 8t t   , 32   va 

8

3
   bo‘lsa, u holda 

(8) qo‘shimcha hadli va o‘zgaruvchan koeffitsiyentli modifitsirlangan Burgers 
tenglamasining yechimi quyidagi ko‘rinishga ega bo‘ladi: 

2

21

1
2 4

2

1 1
( , ) sh arcth ( 1)

1 1
( ( ))t x

u x t t e
t t


  

 
. 

2-misol. 2-teoremaning qo‘llanilishini quyidagi misol yordamida ko‘rib 
chiqamiz. Agar 1( )h t t , 2 ( )h t t , ( )t t  , 1   va 1   bo‘lsa, u holda (8) 



15 

qo‘shimcha hadli va o‘zgaruvchan koeffitsiyentli modifitsirlangan Burgers 
tenglamasining yechimi quyidagi ko‘rinishga ega bo‘ladi: 

23( )

2 ( , ) 3sh arcth( ( ))t xu x t e  . 
Bu bobning uchinchi paragrafida qo‘shimcha hadli kasr tartibli hosilali Korteveg-

de Friz tenglamasi va kasr tartibli hosilali modifitsirlangan Korteveg-de Friz 
tenglamalarining soliton va davriy to‘lqin yechimlari funksional o‘zgaruvchilar usuli 
yordamida topilgan. 

Qo‘shimcha hadli kasr tartibli hosilali Korteveg-de Friz tenglamasi va kasr tartibli 
hosilali modifitsirlangan Korteveg-de Friz tenglamasini qaraymiz: 

3

16 0t x x xD u puD u D u D u       ,    (9) 
2 3

212 0,t x x xD u pu D u D u D u          (10) 
bu yerda ( , )u x t  noma’lum funksiya, x , 0t  , 0p  , 1 0   va 2 0   o‘zgarmas 
sonlar. 0 1   va 0 1   esa Riman-Liuvill kasr tartibli hosila. 

1-ta’rif. Agar ( )u x  funksiya ( , )a b    oraliqda aniqlangan silliq funksiya bo‘lsa, 
u holda ( )u x  funksiyaning   tartibli chap va o‘ng Riman-Liuvill kasr tartibli hosilalari 
quyidagi tengliklar bilan aniqlanadi: 

,

1 ( )
( )

(1 ) ( )

x

RL a x
a

d u
D u x d

dx x

 



  


, 0 1  , 

,

1 ( )
( )

(1 ) ( )

b

RL x b
x

d u
D x d

dx x
u

 


 
  


, 0 1  . 

Quyidagi nochiziqli kasr tartibli hosilali differensial tenglamani qaraymiz 
, , , , , , 0( )t x t t x x t xF u D u D u D D u D D u D D u          ,           (11) 

bu yerda 0 1  , 0 1  , F  funksional esa ( , )u x t  funksiya va uning kasr tartibli 
hosilalariga bog‘liq. 

1-qadam. (11) nochiziqli kasr tartibli hosilali differensial tenglamani oddiy 
differensial tenglamaga keltirish maqsadida quyidagi almashtirishni kiritamiz: 

( , ) ( )u x t u  , 
(1 ) (1 )

c x k t 


 

 
   

,               (12) 

bu yerda c va k  noldan farqli ixtiyoriy o‘zgarmas sonlar, k  esa to‘lqinning tarqalish 
tezligi. 
 (12) dan foydalanib, (11) nochiziqli kasr tartibli hosilali tenglama quyidagi 
oddiy differensial tenglamaga keltiriladi: 

( , , , , ) 0P u u u u     ,                (13) 

bu yerda 
du

u
d

    

2-qadam. Noma’lum funksiyaning hosilasini ifodalovchi maxsus funksional 
almashtirish kiritamiz. 

( )u F u  ,               (14) 
Mazkur qadam funksional o‘zgaruvchilar usulining asosiy g‘oyasini tashkil etadi. u  
noma’lum funksiyaning   bo‘yicha yuqori tartibli hosilalarini ( )F u  yordamida 
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ifodalash uchun (14) funksional almashtirishdan foydalanib, u  funksiyaning yuqori 
tartibli hosilalari hisoblanadi: 

       

 

 

     

2

2 2

2

2

3 2 2 2 2

( ) 2

3 2

( )( ) ( ) 1
( ) ,

2

( )1
( ),

2

( ) ( ) ( )1
( ) ,

2

..................................................................

IV

d F udF u du dF u
u F u

du d du du

d F u
u F u

du

d F u d F u d F u
u F u

du du du


   

 

 
  

  


          (15) 

3-qadam. (13) oddiy differensial tenglamani u , ( )F u  va uning hosilalari orqali 
ifodalash uchun (14) va (15) tengliklardan foydalanamiz. Ushbu ifodalarni (13) ga 
qo‘yish natijasida tenglama quyidagi ko‘rinishga keltiriladi: 

2 3

2 3

( ) ( ) ( )
, , , , 0
dF u d F u d F u

H u
du du du

   
 

.           (16) 

(16) tenglamani integrallash natijasida ( )F u  funksiyasining aniq ifodasi olinadi. 
Olingan bu funksiya (14) tenglama bilan birgalikda qarab, qaralayotgan masalaning 
yechimlarini hosil qilish imkonini beradi. 

3-teorema. Aytaylik 0c  , 0k  , 0p   va 1  haqiqiy o‘zgarmas sonlar bo‘lsin. 

Agar 1 0
c k

c

 
  bo‘lsa, u holda (9) qo‘shimcha hadli kasr tartibli hosilali Korteveg-de 

Vries tenglamasi quyidagi soliton yechimga ega bo‘ladi: 

1

2 1

1
( , )

2 1
ch

2 (1 ) (1 )

c k
u x t

cp k c cx kt
c c

 




 


 

          

. 

Agar 1 0
c k

c

 
  bo‘lsa, u holda (9) qo‘shimcha hadli kasr tartibli hosilali Korteveg-

de Vries tenglamasi quyidagi davriy yechimga ega bo‘ladi: 

1

2 1

1
( , )

2 1
cos

2 (1 ) (1 )

c k
u x t

cp c k cx kt
c c

 




 


 

          

. 

4-teorema. Aytaylik 0c  , 0k  , 0p   va 2  haqiqiy o‘zgarmas sonlar bo‘lsin. 

Agar 2 0
c k

c

 
  bo‘lsa, u holda (10) qo‘shimcha hadli kasr tartibli hosilali 

modifitsirlangan Korteveg-de Vries tenglamasi quyidagi soliton yechimga ega bo‘ladi: 

2

2

1
( , )

2 1
ch

(1 ) (1 )

k c
u x t

pc k c cx kt
c c

 




 


 

          

. 
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Agar 2 0
c k

c

 
  bo‘lsa, u holda (10) qo‘shimcha hadli kasr tartibli hosilali 

modifitsirlangan Korteveg-de Vries tenglamasi quyidagi davriy yechimga ega bo‘ladi: 

2

2

1
( , )

2 1
cos

(1 ) (1 )

c k
u x t

pc c k cx kt
c c

 




 


 

          

. 

3-misol. 3-teoremaning qo‘llanilishini quyidagi misol yordamida ko‘rib 
chiqamiz. Agar 2k   , 0.5  , 0.5  , 1 1  , 0.5p   va 1c    bo‘lsa, u holda (9) 
qo‘shimcha hadli kasr tartibli hosilali Korteveg-de Vries tenglamasi quyidagi soliton 
yechimga ega bo‘ladi: 

 2

1
( , )

2
ch 2

u x t

x t


 
 

 
 

. 

Agar 1k   , 0.5  , 0.5  , 1 1  , 1p   va 1c   bo‘lsa, u holda (9) 
qo‘shimcha hadli kasr tartibli hosilali Korteveg-de Vries tenglamasi quyidagi davriy 
yechimga ega bo‘ladi: 

 2

1
( , )

2
cos

u x t

x t



 

 
 

. 

4-misol. 4-teoremaning qo‘llanilishini quyidagi misol yordamida ko‘rib 
chiqamiz. Agar 2k   , 0.5  , 0.5  , 2 1  , 0.5p   va 1c    bo‘lsa, u holda (9) 
qo‘shimcha hadli kasr tartibli hosilali modifitsirlangan Korteveg-de Vries tenglamasi 
quyidagi soliton yechimga ega bo‘ladi: 

 
1

( , )
2

ch 2

u x t

x t



 

 
 

. 

Agar 1k   , 0.5  , 0.5  , 2 1  , 1p   va 1c   bo‘lsa, u holda (9) 
qo‘shimcha hadli kasr tartibli hosilali modifitsirlangan Korteveg-de Vries tenglamasi 
quyidagi davriy yechimga ega bo‘ladi: 

 
1

( , )
2 2

cos

u x t

x t



 

 
 

. 

Dissertatsiyaning “Kasr tartibli hosilali hosilali modifitsirlangan Korteveg-de 
Friz-sinus-Gordon tenglamasini sochilish nazariyasining to‘g‘ri va teskari 
masalalar usuli yordamida integrallash” deb nomlangan ikkinchi bobida, kasr 
tartibli hosilali modifitsirlangan Korteveg-de Friz-sinus-Gordon tenglamasini 
Zaxarov-Shabat sistemasi uchun qo‘yilgan sochilish nazariyasining to‘g‘ri va teskari 
masalalar usuli yordamida tez kamayuvchi funksiyalar sinfida integrallash algoritmlari 
ishlab chiqilgan. 
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Bu bobning birinchi paragrafi Zaxarov-Shabat sistemasi uchun sochilish 
nazariyasining to‘g‘ri va teskari masalalar usuli haqida zaruriy tushunchalarni taqdim 
etishdan boshlangan. Ushbu nazariy asoslar bobning keyingi bo‘limlarida bajariladigan 
integrallash jarayoni uchun tayanch vazifasini bajaradi. 

Ushbu  

   
(1) (1) (2)

(2) (2) (1)

( , ) ,

( , ) ,
x

x

v ikv q x t v

v ikv r x t v

  
  

             (16) 

Zaxarov-Shabat sistemasi uchun sochilish nazariyasining to‘g‘ri va teskari masalalari 
haqidagi zaruriy ma’lumotlarni keltiramiz 

2-ta’rif. (16) Zaxarov-Shabat sistemasining ushbu  
1

( , , ) ~
0

ikxx k t e
 
 
 

, 
0

( , , ) ~
1

ikxx k t e   
 
 

, x , 

0
( , , ) ~

1
ikxx k t e   

 
 

, 
1

( , , ) ~
0

ikxx k t e
 
 
 

, x , 

asimtotikalarni qanoatlantiruvchi yechimlarini ( , , )x k t , ( , , )x k t , ( , , )x k t  va 

( , , )x k t  orqali belgilaymiz va bu yechimlar (16) Zaxarov-Shabat sistemasining Yost 
yechimlari deb ataladi. 

Yost yechimlari uchun quyidagi yoyilmalar o‘rinli: 
( , , ) ( , ) ( , , ) ( , ) ( , , )x k t b k t x k t a k t x k t    , 

( , , ) ( , ) ( , , ) ( , ) ( , , )x k t a k t x k t b k t x k t    , 

bu yerda ( , ) ( , )a k t W   , ( , ) ( , )a k t W   , ( , ) ( , )b k t W   , ( , ) ( , )b k t W   . 
Oxirgi tenglikda ( , )W u v  Vronskiy determinanti va u quyidagicha aniqlanadi: 

(1) (2) (2) (1)( , )W u v u v u v  . 
3-ta’rif. Quyidagi 

1
( , )

( , )
k t

a k t
  , 

( , )
( , )

( , )

b k t
k t

a k t
  , 

tengliklar bilan aniqlangan ( , )k t  funksiyaga o‘tish koeffitsiyenti va ( , )k t  
funksiyaga esa qaytish koeffitsiyenti deyiladi. 

Agar ( , ) ( , )r x t q x t   bo‘lsa, u holda ( , )a k t ( ( , )a k t ) funksiya yuqori(quyi) 

yarim tekislikda cheklita j j jk i   (
j j jk i   ), 1,2, ,j N   nollarga ega bo‘lib, 

ular (16) Zaxarov-Shabat sistemasining xos qiymatlaridan iborat bo‘ladi va quyidagi 
tengliklar o‘rinli bo‘ladi: 

( , ) ( ) ( , )j j jx t t x t   , ( , ) ( ) ( , )j jjx t t x t   , 

( )
( )

( )
j

j

j

t
C t

a t




 , 
( )

( )
( )
j

j

j

t
C t

a t




 , 

bu yerda  ( ) ,j jt k t  , 
( , )

( )
j

j

k k

da k t
a t

dk 

 . 

4-ta’rif. Ushbu jamlanmaga  
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 ( , ), , ( ), ( ), 1,2,...,j jk t k k t C t j N   , 

(16) Zaxarov-Shabat sistemasi uchun sochilish nazariyasining berilganlari deyiladi.  
(16) Zaxarov-Shabat sistemasi uchun qo‘yilgan sochilish nazariyasi teskari 

masalasining asosiy integral tenglamalar sistemasi quyidagicha bo‘ladi: 
2 2

1 1

1

0 ( ) 1 ( , )
( , , ) ( , ) ( , , )

1 2 0

jik x i xN
j

j
j j

C t e t e
x k t x t x t d

k k i k i

    
 


 

 


  

 


 
  

 N N N , (17) 

2 2
1 1

1

0 ( ) 1 ( , )
( , ) ( , ) ( , , )

1 2

jik x i xN
j

j
j j

C t e t e
x t x t x t d

k k i k

    
 


 

 

 
 


  
 

 N N N
 

,   (18) 

bu yerda  (1) (2)( , , ) ( , , ), ( , , )
T

x k t N x k t N x k tN ,  , , ( , )lx k t x tN N , 

1,2, ,N  ,  

1
0 1

1 0
   

  
 

. 

(16) Zaxarov-Shabat sistemasining koeffitsiyenti ( , )q x t  sochilish nazariyasining 
berilganlari orqali quyidagicha aniqlanadi: 

2 (2) 2 (2)

1

1
( , ) 2 ( ) ( , ) ( , ) ( , , )j

N
ik x i x

j j
j

q x t i e C t N x t t e N x t d   




 

   .     (19) 

Bu bobning ikkinchi paragrafida esa quyidagi 
  0A

t f xq L q   , x , 0t  ,           (20) 

Riss kasr tartibli hosilali modifitsirlangan Korteveg-de Friz-sinus-Gordon 
tenglamasini mazkur 

0( ,0) ( )q x q x , x ,             (21) 
boshlang‘ich shart bilan qaraymiz. Bu yerda 1 2, 0p p   o‘zgarmas sonlar va  

    1

2 14 4 4A A A A

f L p L p L L


   

,            (22) 

2
2

2

1

4
A

xL q q I q
x 


   


, 

x

I d y


  . 

5-ta’rif. Agar ( , )q x t  funksiya ( , )a b    oraliqda aniqlangan silliq funksiya 
bo‘lsa, u holda ( , )q x t  funksiyaning   tartibli Riss kasr tartibli hosilasi quyidagi tenglik 
bilan aniqlanadi: 

 2 21
ˆ( , ) ( , ) | |

2
ikx

x q x t q k t k e dk






  
  , 

bu yerda ˆ( , ) ( , ) ikxq k t q x t e dx






  , ˆ( , )q k t  funksiya ( , )q x t  funksiyaning Furye 

almashtirishi. 
Boshlang‘ich shartdagi 0 ( )q x  funksiya quyidagi xossalarga ega:  

1. 0(1 | |)| ( ) |x q x dx




   , 
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2. 
0

0

( )
(0)

( )

d
q x

dxH i
d

q x
dx

  
  

   
 

 operator yuqori yarim tekislikda N  ta 1(0)k , 2 (0)k , … , 

(0)Nk  xos qiymatlarga ega va spektral maxsusliklarga ega emas. 

(22) tenglamada keltirilgan  A

f L  ifodani aniqlashda Ablovitz, Bin va Carrlar 

ishida keltirilgan algoritmni qo‘llab, ya’ni Riss kasr tartibli hosilali chiziqli 
modifitsirlangan Korteveg-de Friz-sinus-Gordon tenglamasining 

   2

1 2 0xt x xxxxu p u p u   


,            (23) 

dispersiya munosabatidan foydalanamiz. Buning uchun ( ( ) )( , ) i kx k tu x t e   ifodani 
(23) tenglamaga qo‘yamiz va natijada quyidagi dispersion munosabatga ega bo‘lamiz:  

3 22
1( ) | |

p
k p k k

k
    

 
 . 

Ushbu 
2 (2 )

( )
2f

k
k

k


  , 

tenglikni e’tiborga olsak,  A

f L ifoda (22) ko‘rinishda bo‘lishi kelib chiqadi. 

5-teorema. Agar ( , )q x t  funksiya Riss kasr tartibli hosilali modifitsirlangan 
Korteveg-de Friz sinus-Gordon tenglamasiga qo‘yilgan Koshi masalasi, ya’ni (20)-
(21) masalaning yechimi bo‘lsa, u holda (16) Zaxarov-Shabat sistemasi  uchun 
sochilish nazariyasi berilganlarining vaqt bo‘yicha evolyutsiyalari quyidagi 
differensial tenglamalarni qanoatlantiradi: 

2( , )
2 ( ) ( , )f

k t
ik k k t

t

 
   


, \ {0}k , 

( )
0jdk t

dt
 , 1,2, ,j N  , 

2( )
2 ( ) ( )j

j f j j

dC t
ik k C t

dt
    , 1,2, ,j N  , 

bu yerda 2 2 22
12

( ) 4 | 2 |
4f

p
k p k k

k
    
 

 . 

Olingan natijalar sochilish nazariyasining vaqt bo‘yicha evolyutsiyalarini to‘liq 
aniqlab, (17) tenglamani quyidagi algoritm asosida yechish imkonini beradi. 

Bizga ( ,0)q x  berilgan bo‘lsin. 
Dastlab berilgan ( ,0)q x  boshlang‘ich shart orqali (16) sistemaning 0t   dagi 

sochilish nazariyasining berilganlarini(SNB) topamiz: 

 ( ,0), , (0), (0), 1,2,..., ,j jk k k C j N    

0t   paytidagi SNB ni boshlang‘ich shart sifatida olib, 5-teoremadagi differensial 
tenglamalarni yechib, 0t   paytidagi SNB ning vaqt bo‘yicha evolyutsiyalarini keltirib 
chiqaramiz: 
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 ( , ), , ( ), ( ), 1,2,...,j jk t k k t C t j N   . 

3. Topilgan SNB yordamida (17) va (18) integral tenglamalar sistemasini yechish 
orqali (2) ( , )jN x t , 1,2,...,j N  funksiyalarni aniqlaymiz; 

4. (19) tenglikdan foydalanib ( , )q x t  funksiya topiladi; 

5. Nihoyat, 
1

( , ) ( , )
2 xq x t u x t  tenglikga ko‘ra, (20) tenglamaning ( , )u x t  yechimi 

aniqlanadi. 
5-misol. (20) tenglamani quyidagi 

 0

2
( ,0)

2( )
q x

ch x x



, 

boshlang‘ich shart bilan qaraymiz. Yuqoridagi keltirilgan algoritm yordamida 
( , )q x t funksiyani topamiz: 

 2 2
40 1

2
( , )

2( ) 2 4 | 2 |( )p
q x t

ch x x p t


   
, 

1
( , ) ( , )

2 xq x t u x t tenglikga ko‘ra, (20) tenglamaning ( , )u x t  yechimi quyidagicha 

bo‘ladi: 

  2 2
40 1( , ) 2arctan ( ) 2 4 | 2 |( )pu x t sh x x p t     . 

Bu bobning uchinchi paragrafida esa o‘zgaruvchan koeffitsiyentli Riss kasr 
tartibli hosilali modifitsirlangan Korteveg-de Friz-sinus-Gordon tenglamasi Zaxarov-
Shabat sistemasi uchun qo‘yilgan sochilish nazariyasining to‘g‘ri va teskari masalalar 
usuli yordamida integrallangan. 

Quyidagi 
  0A

t f xq L q   , x , 0t  ,           (24) 

o‘zgaruvchan koeffitsiyentli Riss kasr tartibli hosilali modifitsirlangan Korteveg-de 
Friz-sinus-Gordon tenglamasini mazkur 

0( ,0) ( )q x q x , x ,             (25) 
boshlang‘ich shart bilan qaraymiz. Bu yerda 1 2( ) (, 0)p t tp   vaqtga bog‘liq funksiyalar 
va  

    1

2 14 4 4( ) ( )A A A A

f L p p Lt tL L


   

,           (26) 

2
2

2

1

4
A

xL q q I q
x 


   


, 

x

I d y


  . 

(24) tenglamada keltirilgan  A

f L  ifodani aniqlashda Ablovitz, Bin va Carrlar 

ishida keltirilgan algoritmni qo‘llab, ya’ni o‘zgaruvchan koeffitsiyentli Riss kasr 
tartibli hosilali chiziqli modifitsirlangan Korteveg-de Friz-sinus-Gordon  

   2

1 2( 0) ( )xt x xxxxu ut tp p u   


,            (27) 
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tenglamasining dispersiya munosabatidan foydalanamiz. Buning uchun 
( ( ) )( , ) i kx k tu x t e   ifodani (27) tenglamaga qo‘yamiz va natijada quyidagi dispersion 

munosabatga ega bo‘lamiz: 

3 22
1

)
( ) |

(
( ) |

p
k p k k

k

t
t    

 
 . 

Ushbu 
2 (2 )

( )
2f

k
k

k


  , 

tenglikni e’tiborga olsak,  A

f L ifoda (26) ko‘rinishda bo‘lishi kelib chiqadi. 

6-teorema. Agar ( , )q x t  funksiya o‘zgaruvchan koeffitsiyentli Riss kasr tartibli 
hosilali modifitsirlangan Korteveg-de Friz sinus-Gordon tenglamasiga qo‘yilgan Koshi 
masalasi, ya’ni (24)-(25) masalaning yechimi bo‘lsa, u holda (16) Zaxarov-Shabat 
sistemasi uchun sochilish nazariyasi berilganlarining vaqt bo‘yicha evolyutsiyalari 
quyidagi differensial tenglamalarni qanoatlantiradi: 

2( , )
2 ( ) ( , )f

k t
ik k k t

t

 
   


, \ {0}k , 

( )
0jdk t

dt
 , 1,2, ,j N  , 

2( )
2 ( ) ( )j

j f j j

dC t
ik k C t

dt
    , 1,2, ,j N  , 

bu yerda 2 2 22
12

( ) 4 |) 2 |
4

( )
(f

p
k p t k

t
k

k
    
 

 . 

Dissertatsiyaning “Moslangan manbali umumiy Kaup-Boussinesq 
tenglamasini integrallash” deb nomlangan uchinchi bobida, umumiy Kaup-
Boussinesq tenglamasini sochilish nazariyasining to‘g‘ri va teskari masalalar usuli 
yordamida integrallash masalasi o‘rganilgan. Bobning asosiy maqsadi Shturm-Liuvill 
operatorlarining kvadratik dastasi asosida qurilgan spektral nazariya va uning 
yordamida umumiy Kaup-Boussinesq tenglamasining o‘zgaruvchan koeffitsiyentli 
hamda moslangan manbali ko‘rinishlari uchun aniq integrallash algoritmini ishlab 
chiqishdan iborat.  

Bu bobning birinchi paragrafida Shturm-Liuvill operatorining kvadratik dastasi 
uchun sochilish nazariyasining to‘g‘ri va teskari masalalar yechishning Maqsudov-
Guseynov usuli haqida zaruriy ma’lumotlar keltirilgan. 

Ushbu Shturm-Liuvill operatorlari kvadratik dastasini qaraymiz  

   (28) 

bunda ( )v x  va ( )u x  haqiqiy funksiyalar, ( )u x  absolyut uzluksiz va ular quyidagi 

 | ( ) | < , (1 | |)[| ( ) | | ( ) |] <u x dx x v x u x dx
 

 

     . (29) 

shartlarni qanoatlantiradi. 

2( ) ( ) 2 ( ) = 0, ,L k y y v x y ku x y k y x R     
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(29) shart bajarilganda (28) tenglama 0Imk   yuqori yarim tekislikka tegishli 
barcha k  lar uchun quyidagi  

 ( , ) = [1 (1)], ,ikxf x k e o x      

  ( , ) = [1 (1)],ikxf x k e o x
    ,  

asimptotikalarni qanoatlantiruvchi  yechimlarga ega. Noldan farqli 

haqiqiy 0k   larda, (28) tenglama  va  kabi 

yechimlar fundamental sistemasiga ega boʻladi, va bu fundamental sistemalar oʻzaro 
quyidagi koʻrinishda bogʻlangan:  

 ( , ) = ( ) ( , ) ( ) ( , ),f x k b k f x k a k f x k     

 ( , ) = ( ) ( , ) ( ) ( , ).f x k b k f x k a k f x k      

bu yerda 

  1
( ) = ( , ), ( , ) ,

2
a k W f x k f x k

ik     1
( ) = ( , ), ( , ) .

2
b k W f x k f x k

ik     

Bunda ( )a k  funksiya 0Imk   yuqori yarim tekislikka analitik davom qiladi va 

cheklita 1 2, ,..., Nk k k  nollarga ega boʻladi hamda quyidagi tengliklar oʻrinli boʻladi  

 ( , ) = ( , ),n n nf x k B f x k
   

bu yerdagi nB
  kattaliklar x  oʻzgaruvchiga bog‘liq bo‘lmaydi. 

6-ta’rif. Ushbu 

   

va  

  (30) 

jamlanmalarga (28) tenglamaning mos ravishda chap va oʻng sochilish nazariyasining 

berilganlari deyiladi, bunda n
  quyidagicha aniqlanadi:  

1

=

( )
= , =1,2,...,n n

k kn

da k
B n N

dk




 
 
 
 
 

. 

Chap yoki oʻng sochilish nazariyasining berilganlari orqali ( )u x  va ( )v x  

koeffitsiyentlarni tiklash masalasiga (28) tenglama uchun qoʻyilgan teskari masala 
deyiladi. 

Oʻng sochilish nazariyasi berilganlari (30) yordamida ( )u x  va ( )v x  

koeffitsiyentlarni tiklash masalasini koʻrib chiqamiz. 
Oʻng sochilish nazariyasining berilganlari (30) yordamida ( )F x  funksiyani qurib 

olamiz  

( , ), ( , )f x k f x k 

( , ), ( , )f x k f x k  ( , ), ( , )f x k f x k 

1 2 1 2

( )
( ) = , \{0}, , ,..., , , ,...,

( ) N N

b k
r k k R k k k

a k
    



 
 

 

1 2 1 2

( )
( ) = , \ {0}, , ,..., , , ,...,

( ) N N

b k
r k k R k k k

a k
    



 
  

 
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=1

1
( ) = ( ) .

2

N
ik x ikxn

n
n

F x i e r k e dk





 


     

Topilgan ( )F x  funksiyani quyidagi integral tenglamalarga qoʻyamiz  

 (0) (0)( ) ( , ) ( , ) ( ) = 0, < ,
x

F x y K x y K x F y d x y  


           

 (1) (1)( ) ( , ) ( , ) ( ) = 0, < .
x

iF x y K x y K x F y d x y  


           

Bu integral tenglamalarni yechib  0 ( , )K x y  va  1 ( , )K x y  larni topamiz. Bular 

yordamida quyidagi  

    0 1( , ) = ( , )cos ( ) ( , )sin ( )K x y K x y x K x y x        

funksiyani qurib olamiz. Bu tenglikdagi ( )x  funksiya quyidagi  

 ( ) = ( , ( )) , < <
x

x s s ds x 


      

Volterra integral tenglamasining yechimidan iborat boʻladi. Bu yerda  

 (0) (1)( , ) = R ( , ) Im ( , ) s 2s z e K s s K s s in z       

 (1) 2 (0) 22[R ( , )]s 2[I ( , )]c .e K s s in z m K s s os z     

Natijada, ( )u x  va ( )v x  koeffitsiyentlar ushbu tengliklar orqali topiladi  

 ( ) = ( ),u x x   

     2( ) = ( ) 2 R ( , ) c ( ) I ( , ) s ( ) .
d

v x u x e K x x os x m K x x in x
dx

         

Bu bobning ikkinchi paragrafida quyidagi oʻzgaruvchan koeffitsiyentli umumiy 
Kaup-Boussinesq tenglamasini 

 *( )t xU L U G   , (31) 

ushbu  

 0=0
( , ) = ( )

t
v x t v x , 0=0

( , ) = ( )
t

u x t u x , x R , (32) 

boshlangʻich shartlar bilan qaraymiz. Bu yerda 

( , )

( , )

v x t
U

u x t

 
  
 

, 1

2

( , )

( , )

G x t
G

G x t

 
  
 

, 1( , ) ( ) xG x t t v , 2( , ) ( ) xG x t t u  

 

2

2

*

0 4 2

1 4 2

x

x

x

x

v v d
x

L

u u d









 
      

  
 




, (33)  
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( )s - s  boʻyicha istalgan darajali koʻphad boʻlib(uning koeffitsiyentlari vaqtga 

bogʻliq boʻlishi mumkin), ( )t  esa ixtiyoriy uzluksiz funksiya hisoblanadi va 0 ( )v x , 

0( )u x  funksiyalar haqiqiy va quyidagi shartlarni qanoatlantiradi:  

i) 0( )u x  absolyut uzluksiz funksiya va ushbu tengsizliklar oʻrinli:  

 0| ( ) | <u x dx




 , 0 0(1 | |)[| ( ) | | ( ) |] <x v x u x dx




    (34) 

ii) Shturm-Liuvill operatorlarining kvadratik dastasi  

 2
0 0(0, ) ( ) 2 ( ) = 0,L k y y v x y ku x y k y x R       

2N  ta 1 2 2(0), (0),..., (0)Nk k k  oddiy xos qiymatlarga ega.  

7-teorema. Agar = ( , )v v x t  va = ( , )u u x t  funksiyalari (31)-(34) masalasining 

yechimlari boʻlsa, u holda Shturm-Liuvill operatorlarining kvadratik dastasi ( , )T t k  

uchun sochilish nazariyasi berilganlarining vaqt boʻyicha evolyutsiyalari quyidagi 
differensial tenglamalarni qanoatlantiradi: 

( , )
2 [ (2 ) ( )] ( , )

dr t k
ik k t r t k

dt


    , ,k  

( )
0ndk t

dt
 , 1,2, , ,n N   

( )
2 [ (2 ) ( )] ( )n

n n n

d t
ik k t t

dt

  


   , 1,2, ,n N  . 

Olingan natijalar sochilish nazariyasi berilganlarining vaqt boʻyicha 
evolyutsiyasini toʻla aniqlaydi va (31)-(34) masalani teskari masala usulida yechish 
imkonini beradi. 

Bu bobning uchinchi paragrafida moslangan manbali umumiy Kaup-Boussinesq 
tenglamasi tez kamayuvchi funksiyalar sinfida integrallangan. 

Ushbu 

  (35) 

Shturm-Liuvill operatorlari kvadratik dastasini qaraymiz. Bu yerda 
( , ) = ( ) 2 ( )V x k v x ku x  hamda ( )v x  va ( )u x  funksiyalar kompleks qiymatli 

funksiyalar bo‘lib quyidagi shartlarni qanoatlantiradi: 

 2 ( ) ( ) <x v x u x dx




     , | | ( ) ( ) <x v x u x dx




      , (36) 

(36) shart bajarilganda, (35) tenglama ixtiyoriy k R  larda ushbu 
asimptotikalarni 

  1 1( , ), ( , ) , , ,ikx ikxf x k g x k e e x      

  2 2( , ), ( , ) , ,ikx ikxf x k g x k e e x       

2( ) ( ) = 0, ,L k y y V k y x R    
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qanoatlantiruvchi 1 1{ ( , ), ( , )}f x k g x k  va 2 2{ ( , ), ( , )}f x k g x k  Yost yechimlariga ega. 

Noldan farqli haqiqiy 0k   da 1 1{ ( , ), ( , )}f x k g x k  va 2 2{ ( , ), ( , )}f x k g x k  funksiyalar 

(35) tenglamaning yechimlar fundamental sistemasini tashkil qiladi. Bu yechimlar 
uchun quyidagi tengliklar oʻrinli  

 2 11 1 12 1 2 12 1 11 1= , = ,f c f c g g d f d g    

 1 22 2 21 2 1 21 2 22 2= , = ,f c f c g g d f d g    

 1 1
12 21 1 2 11 22 2 1= = (2 ) [ , ], = = (2 ) [ , ],c c ik W f f c d ik W f g    

 1 1
12 21 2 1 11 22 1 2= = (2 ) [ , ], = = (2 ) [ , ],d d ik W g g d c ik W f g    

bunda 11 12 21 22 11 12 21 22, , , , , , ,c c c c d d d d  funksiyalar x  oʻzgaruvchiga bog‘liq emas hamda 

21( ), ( < 0)c k Imk  funksiya quyi yarim tekislikka analitik davom qiladi. (35) 

tenglamada ( , )V x k  oʻrniga ( , )V x k  ni qarasak, u holda (35) ni ikkita tenglama deb 

qarash mumkin. Shu sababli yuqorida keltirilgan barcha tengliklarda " "  indeks bor 

deb tushunamiz. 21( )( < 0)c k Imk  funksiya cheklita N   nollarga ega va bu nollarni 

, = 1,2,...,nk n N   orqali belgilaymiz. 

7-ta’rif. Ushbu  

11

21

( )
( ) = , \ {0}, , , =1,2,...,

( ) n n

c k
R k k R k C n N

c k


    

  
  

jamlanmaga (35) tenglamaning sochilish nazariyasining berilganlari deyiladi. 
Bu yerda  

1

11 21
=

= ( ) ( ) .n n
k kn

d
C c k i c k

dk

   



      
 

( )u x  va ( )v x  koeffitsiyentlar sochilish nazariyasi berilganlari orqali yagona 

aniqlanadi. 
Bu bobning uchinchi paragrafida moslangan manbali umumiy Kaup-Boussinesq 

tenglamasi uchun sochilish nazaryasi berilganlarining vaqt boʻyicha oʻzgarish 
evolyutsiyalari keltirib chiqarilgan va moslangan manbali umumiy Kaup-Boussinesq 
tenglamasi uchun qoʻyilgan Koshi masalasini teskari masala usuli yordamida yechish 
algoritmi keltirilgan. 

Quyidagi moslangan manbali umumiy Kaup-Boussinesq tenglamasini 

 
*

2

( ) ,

( ) 2 0, 1,2, , ,

t x

m xx m m m

U L U G

k v k u m N 

  
         

 (37) 

ushbu  

 0=0
( , ) = ( )

t
v x t v x , 0=0

( , ) = ( )
t

u x t u x , x R , (38) 

boshlangʻich va quyidagi  
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 2(2 2 ) = ( ), =1,2,..., ,m m mk u dx A t m N




   (39) 

normallovchi shartlar bilan qaraymiz. Bu yerda 

( , )

( , )

v x t
U

u x t

 
  
 

, 1

2

( , )

( , )

G x t
G

G x t

 
  
 

,  

2 2
1

1

( , ) 2 ( 2 )
N

x m m m
m

G x t u k u
x

 


      
 , 2

2
1

( , )
N

m
m

G x t
x







 , 

 

2

2

*

0 4 2

1 4 2

x

x

x

x

v v d
x

L

u u d









 
      

  
 




, (40)  

bu yerda ( )s  - s  boʻyicha istalgan darajali koʻphad boʻlib(uning 

koeffitsiyentlari vaqtga bogʻliq boʻlishi mumkin), 

 funksiyalar (35) tenglamaning 

,  xos qiymatlariga mos 

keluvchi xos funksiyalari, hamda  lar oldindan berilgan ixtiyoriy 

uzluksiz funksiyalar. 0 0( ), ( )v x u x  funksiyalar quyidagi shartlarni qanoatlantiradi:   

i) 0 ( )v x , 0( )u x  funksiyalar kompleks qiymatli funksiyalar bo‘lib quyidagi 

shartlarni qanoatlantiradi: 

 2
0 0( ) ( ) <x v x u x dx





    , 0 0| | ( ) ( ) <x v x u x dx




      (41) 

ii) Shturm-Liuvill operatorlari kvadratik dastasi  

 

chekli  ta oddiy xos qiymatlarga ega.  
8-teorema. Agar = ( , )v v x t  va = ( , )u u x t  funksiyalari (37)-(40) masalasining 

yechimlari boʻlsa, u holda Shturm-Liuvill operatorlarining kvadratik dastasi ( , )T t k  

uchun sochilish nazariyasi berilganlarining vaqt boʻyicha evolyutsiyalari quyidagi 
differensial tenglamalarni qanoatlantiradi: 

( , )
2 ( ) ( , )

dR t k
ik k R t k

dt


    , ,k  

( )
0ndk t

dt



 , 1,2,...,n N  , 

( )
[2 ( ) 2 ( )] ( )n

n n n n n

dC t
ik k ik A t C t

dt


       , 1,2,...,n N  , 

1 1 2 2( , ), ( , ),..., ( , )N Nx t x t x t       

1 1 2 2= ( ), = ( ),..., = ( )N Nk k t k k t k k t Im 0, =1,2,...,mk m N

1 2( ), ( ),..., ( )NA t A t A t

2
0 0(0, ) ( ) 2 ( ) = 0,L k y y v x y ku x y k y x R     

N
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( )
2 ( ) ( )n

n n n

dC t
ik k C t

dt


     , 1,2,...,n N  . 

Olingan natijalar sochilish nazariyasi berilganlarining vaqt boʻyicha 
evolyutsiyasini toʻla aniqlaydi va (37)-(40) masalani teskari masala usulida yechish 
imkonini beradi. 

XULOSA 

Mazkur dissertatsiya ishi moslangan manbali butun va kasr tartibli hosilali 
xususiy hosilali nochiziqli evolyutsion tenglamalarni tez kamayuvchi funksiyalar 
sinfida sochilish nazariyasining to‘g‘ri va teskari masalalari usulida integrallashga 
bag‘ishlangan. 

Dissertatsiya ishining asosiy natijalari quyidagilardan iborat: 
1) funksional o‘zgaruvchilar usuli yordamida qo‘shimcha hadli va o‘zgaruvchan 

koeffitsiyentli modifitsirlangan Burgers tenglamasi, qo‘shimcha hadli kasr tartibli 
hosilali Korteveg-de Friz tenglamasi va kasr tartibli hosilali modifitsirlangan 
Korteveg-de Friz tenglamasining aniq soliton va davriy yechimlari topilgan; 

2) Riss kasr tartibli hosilali modifitsirlangan Korteveg-de Friz-sinus-Gordon 
tenglamasi Zaxarov-Shabat sistemasi uchun sochilish nazariyasining to‘g‘ri va teskari 
masalalar usulini yordamida tez kamayuvchi funksiylar sinfida integrallanuvchanligi 
isbotlangan; 

3) o‘zgaruvchan koeffitsiyentli va moslangan manbali umumiy Kaup-Boussinesq 
tenglamasi Shturm-Liuvill operatorlari kvadratik dastasi uchun sochilish 
nazariyasining to‘g‘ri va teskari masalalar usuli yordamida tez kamayuvchi funksiylar 
sinfida integrallanuvchanligi isbotlangan; 

Olingan natijalar dissertatsiya tadqiqotining maqsadga erishilganligini 
tasdiqlaydi. Barcha asosiy natijalar nochiziqli evolyutsion tenglamalarni integrallash 
nazariyasiga ma’lum darajada hissa qo‘shadi. 
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INTRODUCTION (Annotation of the PhD Dissertation in Philosophy) 
The actuality (relevance) and demand of the theme of the dissertation. 

Today, many scientific and practical studies around the world are connected to 
one of the important and active areas of modern mathematics the study of nonlinear 
evolution equations. These equations describe many real processes in nature. Since 
anomalous diffusion and fractional dispersion effects appear in many physical and 
technological systems, studying nonlinear evolution equations with integer and 
fractional derivatives and with self-consistent sources have become very important. 
This is not only a theoretical topic but also a practical one. Research in this area 
strengthens the connection between pure mathematics, computer simulations, and 
experimental physics. It helps scientists discover new types of solitons, new kinds of 
wave behaviors, and new classes of integrable equations. In addition, these 
mathematical models are very useful in many fields such as plasma physics, optics, 
fluid dynamics, biomedicine, geophysics, heat transfer, and even economic models 
where inertia effects appear.  

At present, large-scale research is being carried out around the world on the 
integration of nonlinear evolution equations that include self-consistent sources. 
Usually, equations without such sources are model equations derived under ideal 
conditions, but real natural processes always involve additional effects. Therefore, 
when studying nonlinear evolution equations, it becomes necessary to introduce 
equations with variable coefficient and self-consistent sources. For this reason, 
nonlinear evolution equations with variable coefficients and self-consistent sources are 
considered more realistic mathematical models of these processes. In particular, special 
attention worldwide is being given to  the solution of the modified Burgers equation 
with variable-coefficient and additional term, as well as the fractional Korteweg-de 
Vries and modified Kortewe-de Vries equations with additional terms using the 
functional variable method, integration of the Riesz fractional modified Korteweg-de 
Vries-sine-Gordon equation using the inverse scattering method, the integration of the 
hierarchy Kaup-Boussinesq equation with variable-coefficient and self-consistent 
sources in the class of rapidly decaying functions. 

In the Republic of Uzbekistan, extensive research is being carried out to determine 
solutions of fractional-order and integrable nonlinear evolution equations using the 
methods of the direct and inverse scattering problems formulated for the Zakharov-
Shabat system and the quadratic pencil of Sturm-Liouville operators, as well as to apply 
the obtained solutions in practice. In particular, significant results have been achieved 
in constructing soliton solutions of the modified Korteweg-de Vries equation with 
Riesz fractional derivatives and the generalized Kaup-Boussinesq equation by 
employing the direct and inverse scattering methods. 

In accordance with the Decision of the Cabinet of Ministers of the Republic of 
Uzbekistan adopted in 2019 on further development of mathematical education and 
sciences, conducting scientific research at the level of international standards in priority 
areas of mathematics namely algebra and functional analysis, differential equations and 
mathematical physics, dynamical systems theory, geometry and topology, probability 
theory and mathematical statistics, applied mathematics and mathematical 
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modelinghas been defined as the main objectives and areas of activity of mathematical 
sciences2.  

In implementing these tasks, special importance is attached to the application of 
the direct and inverse scattering methods in the integration of nonlinear evolution 
equations of modern mathematical physics. In particular, the integration of the Riesz 
fractional derivative modified Korteweg-de Vries-sine-Gordon equation in the class of 
rapidly decaying functions using the direct and inverse scattering methods formulated 
for the Zakharov-Shabat system, as well as the integration of the generalized Kaup-
Boussinesq equation with variable coefficients and self-consistent sources using the 
direct and inverse scattering methods formulated for the quadratic pencil of Sturm-
Liouville operators, is of great significance. 

The present dissertation research contributes, to a certain extent, to the 
implementation of the tasks set forth in the Decrees of the President of the Republic of 
Uzbekistan No. PF-6097 dated October 29, 2020, “On Approval of the Concept for the 
Development of Science until 2030,” and No. PF-60 dated January 28, 2022, “On the 
Development Strategy of New Uzbekistan for 2022-2026,” as well as in the Decisions 
of the President of the Republic of Uzbekistan No. PQ-4387 dated July 9, 2019, “On 
State Support for Further Development of Mathematical Education and Sciences and 
Measures for Radical Improvement of the Activities of the V. I. Romanovsky Institute 
of Mathematics of the Academy of Sciences of the Republic of Uzbekistan,” and No. 
PQ-4708 dated May 7, 2020, “On Measures to Improve the Quality of Education in the 
Field of Mathematics and to Develop Scientific Research,” along with other regulatory 
and legal documents related to this field of activity. 

Connection of the research to the priority areas of the development of science 
and technology of the Republic. The research and studies in this dissertation work 
were conducted in accordance with the development of science and technology in the 
Republic of Uzbekistan IV. “Mathematics, mechanics and computer science”. 

The degree of scrutiny of the problem. The functional variable method for 
obtaining periodic and soliton solutions of nonlinear evolution equations with constant 
coefficients was first introduced by W. Djoudi and A. Zerarka in 2010. Subsequently, 
this method was extended by Li and He, who successfully applied it to derive periodic 
and soliton solutions of fractional differential equations. 

In 2016, W. Djoudi and A. Zerarka further developed this method and constructed 
periodic and soliton solutions of the Korteweg-de Vries equation and the modified 
Korteweg-de Vries equation variable coefficient using the functional variable method. 
The main advantage of the proposed functional variable method over other methods is 
that it provides more accurate traveling wave solutions with additional free parameters.  

In recent years, extensive research has been conducted on the integration of 
nonlinear evolution equations of integer and fractional order using the method of direct 
and inverse problems of scattering theory. In particular, the modified Korteweg-de 
Vries-sine-Gordon equation with integral derivatives was first introduced in 1974 by 

                                              
2Decision No. 292 of the Cabinet of Ministers of the Republic of Uzbekistan dated May 18, 2017 “On Measures to 
Organize the Activities of Newly Established Research Institutions of the Academy of Sciences of the Republic of 
Uzbekistan.” 
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K. Konno as a mathematical model describing nonlinear vibrational phenomena in an 
atomic lattice, and its complete integrability using the method of direct and inverse 
problems of scattering theory was shown. Later, this equation was used by H. Leblond 
and D. Mihalache to describe the propagation of short optical pulses in transparent 
media. Also, periodic infinite zone solutions of this equation were studied by A. 
Khasanov, and solutions in the class of rapidly decreasing functions were studied by 
U. Hoitmetov. 

In 2022, American scientists Ablowitz, Been, and Carr showed that the Riesz 
fractional nonlinear Korteweg-de Vries equation can be integrated using the method of 
direct and inverse problems of scattering theory, and applied this method to the 
integration of the Riesz fractional nonlinear Schrodinger equation, the Riesz fractional 
derivative modified Korteweg-de Vries equation, and the Riesz fractional derivative 
sine-Gordon equation. This method proposed by them is currently being applied to the 
integration of many fractional nonlinear evolutionary equations. In particular, Chinese 
scientists W. Weng, M. Zhang, and Z. Yan used this method to integrate 
generalizations of the Riesz fractional nonlinear Schrödinger equation and study the 
dynamics of N-soliton solutions. L. An, L. Ling, and H. Zhang obtained soliton 
solutions to the Riesz fractional derivative nonlinear Schrodinger equation and the 
Riesz fractional Hirota equation. SH. Zhang, H. Li, and B. Xu showed that the Riesz 
fractional derivative Korteweg-de Vries and nonlinear Schrodinger equations with 
variable coefficients can be integrated using the direct and inverse problem method of 
scattering theory. 

Using the direct and inverse scattering theory for the quadratic pencil of Sturm-
Liouville operators, D. J. Kaup demonstrated the complete integrability of the Kaup-
Boussinesq equation, which models the propagation of waves in shallow water in the 
class of rapidly decaying functions. Subsequently, M. Jaulent and I. Miodek developed 
an algorithm for solving the Cauchy problem for the Kaup-Boussinesq equation and its 
higher-order analogues. 

V. B. Matveev and M. I. Yavor studied the Kaup-Boussinesq equation and 
obtaining multi solutions and analyzing their asymptotic properties. The real multi 
solutions of the Kaup-Boussinesq system were further investigated in the works of A. 
O. Smirnov. 

In addition, A. Cabada and A. Yakshimuratov integrated the Kaup-Boussinesq 
equation with self-consistent sources in the class of periodic functions, obtaining 
important results concerning the periodicity properties of the solutions and their 
analyticity with respect to the independent variables. Furthermore, B. A. Babajanov 
and A. Sh. Azamatov established the integrability of the Kaup-Boussinesq equation 
with self-consistent sources by applying the inverse scattering method for the quadratic 
pencil of Sturm-Liouville equations. 

Relevance of the dissertation with the research works of higher education, 
where the dissertation is carried out. The dissertation was carried out in accordance 
with the research plan of the Department of “Exact Sciences” of the Khorezm Ma’mun 
Academy, within the framework of the scientific project “Applications of the Spectral 
Theory of Differential Operators to Nonlinear Evolution Equations” for the period 
2022-2025. 
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The aims of research work are:  
to obtain soliton and periodic solutions of the modified Burgers equation with 

variable-coefficient and an additional term, the fractional Korteweg-de Vries equation 
with an additional term, and the fractional modified Korteweg-de Vries  equation with 
an additional term using the functional variable method;  

to study the Riesz fractional modified Korteweg-de Vries-sine-Gordon equation 
by the direct and inverse scattering problems of scattering theory;  

to integrate the hierarchy Kaup-Boussinesq with variable-coefficient and self-
consistent sources in the class of rapidly decaying functions. 

Problems of the research: 
to obtain soliton solutions of the modified Burgers equation with variable-

coefficient and an additional term using the functional variable method and to derive 
soliton and periodic solutions of the fractional Korteweg-de Vries equation with an 
additional term and the fractional modified Korteweg-de Vries equation with an 
additional term by functional variable method; 

to integrate the Riesz fractional modified Korteweg-de Vries-sine-Gordon 
equation using the direct and inverse scattering problems of scattering theory for the 
Zakharov-Shabat system; 

to integrate the hierarchy Kaup-Boussinesq with variable-coefficient  and self-
consistent sources by applying the direct and inverse scattering problems associated 
with the quadratic pencil of Sturm-Liouville operators. 

The object of the research consists of the modified Burgers equation equation 
with variable-coefficient and an additional term, the fractional Korteweg-de Vries 
equation with an additional term, the fractional modified Korteweg-de Vries equation 
with an additional term, the Riesz fractional modified Korteweg-de Vries-sine-Gordon 
equation, and the hierarchy Kaup-Boussinesq with variable coefficient  and self-
consistent sources. 

The subject of the research is the application of the direct and inverse scattering 
problems of scattering theory for the Zakharov-Shabat system and for the quadratic 
pencil of Sturm-Liouville operators to the integration of nonlinear evolution equations 
with integer and fractional derivatives. In addition, the study investigate the use of the 
functional variable method to obtain exact analytical solutions for several nonlinear 
evolution equations with variable coefficients. 

Research methods. The dissertation uses a range of modern mathematical 
methods and approaches, including mathematical analysis, the theory of ordinary and 
partial differential equations, equations of mathematical physics, functional analysis, 
the theory of functions of a complex variable, and the spectral theory of differential 
operators. 

Scientific novelty of research work consists of the followings:  
soliton and periodic solutions of the modified Burgers equation with variable-

coefficient and an additional term, the fractional Korteweg-de Vries equation with an 
additional term, and the fractional modified Korteweg-de Vries an additional term 
equation have been obtained using the functional variable method; 

the integrability of the Riesz fractional modified Korteweg-de Vries-sine-Gordon 
equation in the class of rapidly decaying functions has been established by applying 
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the direct and inverse scattering problems of scattering theory associated with the 
Zakharov-Shabat system; 

the integrability of the hierarchy Kaup-Boussinesq with variable-coefficient  and 
self-consistent sources in the class of rapidly decaying functions has been proved using 
the direct and inverse scattering problems of scattering theory formulated for the 
quadratic pencil of Sturm-Liouville operators. 

The practical results of the research include the derivation of soliton and 
periodic solutions of the modified Burgers equation with variable coefficient and an 
additional term, the fractional Korteweg-de Vries equation with an additional term, and 
the fractional modified Korteweg-de Vries equation with an additional term using the 
functional variable method. These solutions provide deeper insight into dispersive 
interactions in various media and can be directly applied in models of turbulence, gas 
dynamics, and nonlinear diffusion. An integration algorithm for the Riesz fractional 
modified Korteweg-de Vries-sine-Gordon equation has been constructed by applying 
the direct and inverse scattering problems of scattering theory formulated for the 
Zakharov-Shabat system. These results are effective for analyzing nonlinear wave 
processes involving fractional derivatives. Furthermore, an integration algorithm for 
the hierarchy Kaup-Boussinesq with variable-coefficient and self-consistent sources 
has been developed using the direct and inverse scattering problems associated with 
the quadratic pencil of Sturm-Liouville operators, and explicit formulas describing its 
time evolution have been obtained. 

The reliability of the research results is ensured by the use of modern analytical 
methods, including equations of mathematical physics, functional analysis, the theory 
of functions of a complex variable, the spectral properties of the Zakharov-Shabat 
system, and the inverse scattering problems associated with the quadratic pencil of 
Sturm-Liouville operators. All theorems and results have been derived on the basis of 
rigorous mathematical argumentation, precise proofs, and the fundamental principles 
of spectral analysis. Their correctness has been verified through detailed examination 
and confirmed by comparison with known classical results. 

Scientific and practical significance of research results. The main results 
obtained in the dissertation can be applied within the spectral theory of linear operators, 
as well as in the analysis of various problems in solid-state physics, ion acoustics, 
plasma physics, radiophysics, and quantum physics. The significance of the work is 
further determined by the possibility of applying the developed theoretical approaches 
and analytical methods to the integration of nonlinear evolution equations with self-
consistent sources in mathematical physics. 

Implementation of research results. Based on the results obtained for the 
integration of nonlinear evolution equations with integer and fractional derivatives and 
self-consistent sources: 

The soliton solutions of the modified Burgers equation with additional terms and 
variable coefficients, as well as the properties of one-soliton solutions obtained by 
integrating the fractional modified Korteweg-de Vries-sine-Gordon equation using the 
direct and inverse scattering transform associated with the Zakharov-Shabat system, 
were applied in the applied research project AL-42101210 “Monitoring System of 
Smart City Sensor Infrastructure”, carried out during 2022-2023 under the supervision 



36 

of Doctor of Physical and Mathematical Sciences A. B. Yakhshimuratov at the 
Urgench Branch of Tashkent University of Information Technologies named after 
Muhammad al-Khwarizmi(Reference issued by Urgench State University named after 
Abu Rayhon Beruni, Uzbekistan, November 5, 2025). The properties of the one-soliton 
solutions obtained from the fractional modified Korteweg-de Vries-sine-Gordon 
equation were used for signal transmission without altering the essential characteristics 
of the signals. In addition, the soliton solutions of the modified Burgers equation with 
variable coefficients were applied in sensor networks to reduce noise amplification and 
signal distortion, as well as to effectively control signal amplitude and transmission 
speed. The implementation of these scientific results enabled the development of 
software tools for assessing fire presence in buildings and contributed to reducing the 
data load in communication and transmission networks. 

The scientific results obtained by integrating the hierarchy Kaup-Boussinesq 
equation using the direct and inverse scattering transform were applied in the 
fundamental research project Uzb-Ind-2021-80 “Investigation of the Self-Heating 
Effect in a MOYA Transistor Based on Ordered Nanoplates Surrounded by a Gate”, 
carried out during 2021-2023 under the supervision of A. E. Atamuratov at Urgench 
State University named after Abu Rayhon Beruni(Reference issued by Urgench State 
University named after Abu Rayhon Beruni, Uzbekistan, November 5, 2025). The 
results derived from the integration of the hierarchy Kaup-Boussinesq system using the 
direct and inverse scattering transform were used to provide a theoretical justification 
for the maximum temperature arising at the center of the nanoplate-based MOYA 
transistor channel, to mathematically describe the mechanisms of local heat 
accumulation within the transistor, and to develop modeling algorithms describing the 
relationships between heat flux, current density, the Ion/Ioff ratio, and constructive-
geometric parameters. The implementation of these scientific results made it possible 
to give a mathematically grounded explanation of the initiation and development of 
self-heating processes in the active regions of the transistor, to perform early 
assessment of local heat accumulation, to identify the relationship between structural-
geometric parameters and heat dissipation, and to develop computational and 
simulation methods for selecting optimal structural parameters to ensure stable 
transistor operation. 

Approbation of the research results. The research results were discussed at 7 
scientific and practical conferences, including 6 international and 1 national scientific-
practical conferences. 

Publication of the research results. A total of 14 scientific works were published 
on the subject of the dissertation, 6 of them were published in international scientific 
journals included, and 1 was published in national journals recommended by the 
Supreme Attestation Comission at the Ministry of Higher education, science and 
innovations of the Republic of Uzbekistan for the defense of doctoral dissertations. 

The structure and volume of the dissertation. The dissertation consists of an 
introduction, three chapters, a conclusion and a list of the used references. The volume 
of the dissertation is 102 pages.  
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BASIC CONTENT OF THE DISSERTATION 

In the Introduction, the relevance and necessity of the dissertation topic are 
justified, the correspondence of the research to the priority directions of scientific and 
technological development in the Republic is indicated, and the degree of study of the 
problem is presented. The connection of the dissertation with the research plans of the 
higher educational institution where it was carried out is described. The aim, 
objectives, object, subject, and methods of the research are outlined, the scientific 
novelty and practical results are stated, the theoretical and practical significance of the 
obtained findings is explained, and information is provided on the implementation of 
the results, the published works, and the structure of the dissertation. 

The first chapter of the dissertation, titled “Soliton and periodic wave solutions 
of nonlinear evolution equations with integer and fractional derivatives via the 
functional variable method” is devoted to obtaining soliton and periodic solutions of 
the modified Burgers equation with an additional term and variable coefficients, the 
fractional-order Korteweg-de Vries equation with an additional term, and the 
fractional-order modified Korteweg-de Vries equation. In the first paragraph of this 
chapter, the mathematical essence of the functional variable method, its conditions of 
application, basic concepts, and its advantages in constructing solutions are explained 
in detail. In the second paragraph, the solutions of the modified Burgers equation with 
an additional term and variable coefficients are obtained by applying the functional 
variable method. In the third paragraph, the soliton and periodic wave solutions of the 
fractional-order Korteweg-de Vries equation with an additional term and the fractional-
order modified Korteweg-de Vries equation are constructed. In addition, the 
effectiveness of the functional variable method for fractional-order models is 
theoretically substantiated. 

Let us consider the following nonlinear differential equation: 
( , , , , , , , , ) 0t x y z xy yz xzP u u u u u u u u   ,    (1) 

Step 1. To reduce the nonlinear partial differential equation to an ordinary 
differential equation, we introduce the following linear transformation: 

0

p

i i
i

   


  ,      (2) 

where i  are independent variables. If 1p   then the expression becomes

0 0 1 1        . 0  and 1  are constants interpreted as the wave frequency and 

wave number, respectively, while 0  and 1  represent the time variable t  and the 
spatial coordinate x . 

We can introduce the following transformation for a travelling wave solution of 
equation (2) 

0 1( , , ) ( )u u    ,      
and by the chain rule we have the following relations: 

2 2

2
, ,i i j

i i j

u du u d u

d d
 

    
 

  
  

,   (3) 
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Using substitutions (2) and (3), the nonlinear partial differential equation (1) is 
reduced to an ordinary differential equation. As a result, we obtain an equation of the 
form 

( , , , , ) 0Q u u u u    ,     (4) 
where Q  is a functional of the unknown function u , depending on u  and its derivatives 

with respect to  . Here 
du

u
d

  . 

Step 2. We make a transformation in which the unknown function u  is considered 
as a functional variable in the form 

( )u F u  ,      (5) 
Applying this functional substitution, the solution is obtained from the integral 

relation 

( )

du
C

F u
  ,      

where C  is a constant of integration, which is usually taken as 0C   for convenience. 
This step forms the main idea of the functional variable method, since it allows the 
reduction of the ordinary differential equation to a form that can be solved explicitly. 
To express the higher-order derivatives of u  with respect to   in terms of we use 
substitution (5). For this purpose, the higher-order derivatives of the function u  

 

 

     

2

2 2

2

2

3 2 2 2 2

( ) 2

3 2

( )( ) ( ) 1
( ) ,

2

( )1
( ),

2

( ) ( ) ( )1
( ) ,

2

..................................................................

IV

d F udF u du dF u
u F u

du d du du

d F u
u F u

du

d F u d F u d F u
u F u

du du du


   

 

 
  

  


  (6) 

3-qadam. To express the ordinary differential equation (4) in terms of  u , ( )F u
and their derivatives, we use the functional substitutions given in (5) and (6). 
Substituting these expressions into equation (4), the equation is transformed into the 
following form: 

2 3

2 3

( ) ( ) ( )
, , , , 0
dF u d F u d F u

R u
du du du

   
 

.    (7) 

By integrating equation (7), the explicit form of the function ( )F u  is obtained and 
together with equation (5), this result allows us to construct the solutions of the problem 
under consideration. 

In the second paragraph of this chapter, the exact solutions of the modified 
Burgers equation with an additional term and variable coefficients are obtained using 
the functional variable method. The main advantage of the proposed method over other 
methods is that it provides more new exact traveling wave solutions.  
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We consider the following modified Burgers equation with an additional term and 
variable coefficients: 

2

1 2( ) ( ) ( ) 0t x xx xu h t u u h t u t u    ,    (8) 
where ( , )u x t  is the unknown function, x , 0t  , 1( ) 0h t  , 2 ( ) 0h t   and ( ) 0t   
are given continuously differentiable functions. The condition 2 ( ) 0h t   represents the 
kinematic viscosity coefficient of the fluid. 

Theorem 1. Let 1( ) 0h t  , 2 ( ) 0h t   va ( ) 0t   be continuously differentiable 
functions, and suppose that they satisfy the relation 

2

2

4 1
42

2

1 3
0

( )
( )

3
( )

Ct

C h t
h t

C
h d C


 

 
  
 


. 

Then the solution of the modified Burgers equation with an additional term and 
variable coefficients given in (8) has the form 

1

2

( , )4
1

2

1 3 1 3
0 0

1
( , ) sh arcth

( ) ( )
( ( ))

( )
H x t

t t
C

C
u x t e

h d C h d C   
 

  
,  

where 2

1 2 2 2 1 2
0

( , ) ( ) ( )( )
t

H x t C h C d C C x        ,  ,  , 1C , 2C , and 3C  are 

nonzero constants. 
Theorem 2. Let 1( ) 0h t  , 2 ( ) 0h t   va ( ) 0t   continuously differentiable 

functions, and suppose that they satisfy the relation 

2 1( ) ( )h t k h t , constk  . 
Then the solution of the modified Burgers equation with an additional term and 
variable coefficients given in (8) has the form 

2 ( , )

2 3( , ) sh arcth( )( )H x tu x t S e .    

where 2

2 2 2 2 1 2
0

( , ) ( ) ( )( )
t

H x t S h S d S S x        ,  , 1S , 2S , and 3S  are nonzero 

constants. 
Example 1. We show the application of Theorem 1 with the following example. 

Let 1( ) 2h t t , 2 2
( )

1

t
h t

t



, ( ) 8t t   , 32   and 

8

3
  . Then the solution of the 

modified Burgers equation with an additional term and variable coefficients given in 
(8) takes the form 

2

21

1
2 4

2

1 1
( , ) sh arcth ( 1)

1 1
( ( ))t x

u x t t e
t t


  

 
. 

Example 2. We show the application of Theorem 2 with the following example. 
Let 1( )h t t , 2 ( )h t t , ( )t t  , 1   and 1  . Then the solution of the modified 
Burgers equation with an additional term and variable coefficients given in (8) takes 
the form 

23( )

2 ( , ) 3sh arcth( ( ))t xu x t e  . 
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In the third paragraph of this chapter, the soliton and periodic wave solutions of 
the fractional Korteweg-de Vries equation with an additional term and the fractional 
modified Korteweg-de Vries equation are constructed using the functional variable 
method. 

We consider the fractional Korteweg-de Vries equation and the fractional 
modified Korteweg-de Vries equation with an additional term: 

3

16 0t x x xD u puD u D u D u       ,    (9) 
2 3

212 0,t x x xD u pu D u D u D u                   (10) 
where ( , )u x t  is the unknown function, x , 0t  , 0p  , 1 0   va 2 0   are 
constants. 0 1   va 0 1   are the orders of the Riemann-Liouville fractional 
derivatives. 

Definition 1. Let ( )u x  be a smooth function defined on the interval ( , )a b   . 
Then the left and right Riemann-Liouville fractional derivatives of order   of the 
function ( )u x  are defined by the following formulas: 

,

1 ( )
( )

(1 ) ( )

x

RL a x
a

d u
D u x d

dx x

 



  


, 0 1  , 

,

1 ( )
( )

(1 ) ( )

b

RL x b
x

d u
D x d

dx x
u

 


 
  


, 0 1  . 

Let us consider the following nonlinear fractional differential equation 
, , , , , , 0( )t x t t x x t xF u D u D u D D u D D u D D u          ,           (11) 

where 0 1  , 0 1  , The functional F  depends on the function u  and its 
fractional derivatives. 

Step 1. To reduce the nonlinear fractional differential equation (11) to an ordinary 
differential equation, we introduce the following transformation: 

( , ) ( )u x t u  , 
(1 ) (1 )

c x k t 


 

 
   

,               (12) 

where c  and k  are arbitrary nonzero constants, and k  represents the propagation speed 
of the wave. 

Using transformation (12), the nonlinear fractional differential equation (11) is 
reduced to the following ordinary differential equation 

( , , , , ) 0P u u u u     ,                (13) 

here 
du

u
d

  . 

Step 2. We now introduce a special functional substitution that expresses the 
derivative of the unknown function 

( )u F u  .               (14) 
This step represents the main idea of the functional variable method and makes it 

possible to determine the solution of the ordinary differential equation. To express the 
higher order derivatives of the unknown function u  with respect to   in terms of ( )F u
, we use the functional substitution given in (14). For this purpose, the higher order 
derivatives of u  are computed as follows: 
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IV

d F udF u du dF u
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d F u d F u d F u
u F u

du du du


   

 

 
  

  


          (15) 

Step 3. To rewrite the ordinary differential equation (13) in terms of u , ( )F u , 
and their derivatives, we apply the functional substitutions given in (14) and (15). 
Substituting these expressions into equation (13), the equation is transformed into the 
following form: 

2 3

2 3

( ) ( ) ( )
, , , , 0
dF u d F u d F u

H u
du du du

   
 

.           (16) 

By integrating equation (16), the explicit form of the function ( )F u  is obtained 
and together with equation (14), this function allows us to construct the solutions of 
the problem under consideration. 

Theorem 3. Let 0c  , 0k  , 0p   va 1  be real constants. If 1 0
c k

c

 
  then 

the fractional Korteweg-de Vries equation with an additional term given in (9) has the 
following soliton solution: 

1

2 1

1
( , )

2 1
ch

2 (1 ) (1 )

c k
u x t

cp k c cx kt
c c

 




 


 

          

. 

If 1 0
c k

c

 
  then the fractional Korteweg-de Vries equation with an additional term 

given in (9) has the following periodic solution: 

1

2 1

1
( , )

2 1
cos

2 (1 ) (1 )

c k
u x t

cp c k cx kt
c c

 




 


 

          

. 

Theorem 4. Let 0c  , 0k  , 0p   va 2  be real constants. If 2 0
c k

c

 
  then 

the fractional modified Korteweg-de Vries equation with an additional term given in 
(10) has the following soliton solution: 

2

2

1
( , )

2 1
ch

(1 ) (1 )

k c
u x t

pc k c cx kt
c c

 




 


 

          

. 
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Agar 2 0
c k

c

 
  then the fractional modified Korteweg-de Vries equation with an 

additional term given in (10) has the following periodic solution: 

2

2

1
( , )

2 1
cos

(1 ) (1 )

c k
u x t

pc c k cx kt
c c

 




 


 

          

. 

Example 3. We show the application of Theorem 3 by means of the following 
example. If 2k   , 0.5  , 0.5  , 1 1  , 0.5p   and 1c    then the fractional 
Korteweg-de Vries equation with an additional term given in (9) possesses the 
following soliton solution: 

 2

1
( , )

2
ch 2

u x t

x t


 
 

 
 

. 

If 1k   , 0.5  , 0.5  , 1 1  , 1p   and 1c   then the fractional Korteweg-
de Vries equation with an additional term given in (9) possesses the following periodic 
solution: 

 2

1
( , )

2
cos

u x t

x t



 

 
 

. 

Example 4. We show the application of Theorem 4 by means of the following 
example. If 2k   , 0.5  , 0.5  , 2 1  , 0.5p   and 1c    then the fractional 
modified Korteweg-de Vries equation with an additional term given in (10) possesses 
the following soliton solution: 

 
1

( , )
2

ch 2

u x t

x t



 

 
 

. 

If 1k   , 0.5  , 0.5  , 2 1  , 1p   va 1c   then the fractional modified 
Korteweg-de Vries equation with an additional term given in (10) possesses the 
following periodic solution: 

 
1

( , )
2 2

cos

u x t

x t



 

 
 

. 

In the second chapter of the dissertation, entitled “Integration of the Riesz 
fractional modified Korteweg-de Vries-sine-Gordon equation via the inverse 
scattering methods”, the integration algorithms for the fractional modified Korteweg-
de Vries-sine-Gordon equation are developed within the class of rapidly decaying 
functions by applying the inverse scattering methods associated with the Zakharov-
Shabat system. 
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The first paragraph of this chapter begins by presenting the essential concepts of 
the direct and inverse scattering methods for the Zakharov-Shabat system. These 
theoretical foundations serve as the basis for the integration procedures carried out in 
the subsequent sections of the chapter. 

We now present the necessary information regarding the inverse scattering 
problems for the Zakharov-Shabat system  

   
(1) (1) (2)

(2) (2) (1)

( , ) ,

( , ) ,
x

x

v ikv q x t v

v ikv r x t v

  
  

             (16) 

Definition 2. The functions ( , , )x k t , ( , , )x k t , ( , , )x k t  and ( , , )x k t  are 
defined as the solutions of the Zakharov-Shabat system (16) that satisfy the following 
asymptotic conditions: 

1
( , , ) ~

0
ikxx k t e

 
 
 

, 
0

( , , ) ~
1

ikxx k t e   
 
 

, x , 

0
( , , ) ~

1
ikxx k t e   

 
 

, 
1

( , , ) ~
0

ikxx k t e
 
 
 

, x , 

These solutions are called the Jost solutions of the Zakharov-Shabat system (16).  
The Jost solutions admit the following expansions: 

( , , ) ( , ) ( , , ) ( , ) ( , , )x k t b k t x k t a k t x k t    , 

( , , ) ( , ) ( , , ) ( , ) ( , , )x k t a k t x k t b k t x k t    , 

where ( , ) ( , )a k t W   , ( , ) ( , )a k t W   , ( , ) ( , )b k t W   , ( , ) ( , )b k t W   .
( , )W u v  denotes the Wronskian determinant, which is defined by: 

(1) (2) (2) (1)( , )W u v u v u v  . 
Definition 3. The functions 

1
( , )

( , )
k t

a k t
  , 

( , )
( , )

( , )

b k t
k t

a k t
  , 

are called the transmission coefficient and the reflection coefficient, respectively. 
If ( , ) ( , )r x t q x t  , then the function ( , )a k t ( ( , )a k t ) has finitely many zeros 

j j jk i   (
j j jk i   ), 1,2, ,j N   in the upper (respectively, lower) half-plane. 

These zeros correspond to the eigenvalues of the Zakharov-Shabat system (16), and 
the following relations hold: 

( , ) ( ) ( , )j j jx t t x t   , ( , ) ( ) ( , )j jjx t t x t   , 

( )
( )

( )
j

j

j

t
C t

a t




 , 
( )

( )
( )
j

j

j

t
C t

a t




 , 

where  ( ) ,j jt k t  , 
( , )

( )
j

j

k k

da k t
a t

dk 

 . 

Definition 4. The set 

 ( , ), , ( ), ( ), 1,2,...,j jk t k k t C t j N   , 

is called the scattering data for the Zakharov-Shabat system (16). 
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The main system of integral equations corresponding to the inverse scattering 
problem for the Zakharov-Shabat system (16) is given by 

2 2
1 1

1

0 ( ) 1 ( , )
( , , ) ( , ) ( , , )

1 2 0

jik x i xN
j

j
j j

C t e t e
x k t x t x t d

k k i k i

    
 


 

 


  

 


 
  

 N N N , (17) 

2 2
1 1

1

0 ( ) 1 ( , )
( , ) ( , ) ( , , )

1 2

jik x i xN
j

j
j j

C t e t e
x t x t x t d

k k i k

    
 


 

 

 
 


  
 

 N N N
 

,   (18) 

where  (1) (2)( , , ) ( , , ), ( , , )
T

x k t N x k t N x k tN ,  , , ( , )lx k t x tN N , 1,2, ,N  ,  

1
0 1

1 0
   

  
 

. 

The potential $q(x,t)$ in the Zakharov-Shabat system (16) is recovered from the 
scattering data via the following formula: 

2 (2) 2 (2)

1

1
( , ) 2 ( ) ( , ) ( , ) ( , , )j

N
ik x i x

j j
j

q x t i e C t N x t t e N x t d   




 

   .     (19) 

In the second paragraph of this chapter, we consider the Riesz fractional modified 
Korteweg-de Vries-sine-Gordon equation 

  0A

t f xq L q   , x , 0t  ,           (20) 

with the initial condition 

0( ,0) ( )q x q x , x ,             (21) 
where 1 2, 0p p   are nonzero constants, and  

    1

2 14 4 4A A A A

f L p L p L L


   

,            (22) 

2
2

2

1

4
A

xL q q I q
x 


   


, 

x

I d y


  . 

Definition 5. The Riesz fractional derivative of the function ( , )q x t  is defined by 

 2 21
ˆ( , ) ( , ) | |

2
ikx

x q x t q k t k e dk






  
  , 

where ˆ( , ) ( , ) ikxq k t q x t e dx






   is the Fourier transform of ( , )q x t . 

The initial function 0 ( )q x  is assumed to satisfy the following conditions: 

1. 0(1 | |)| ( ) |x q x dx




   , 

2. The operator  

0

0

( )
(0)

( )

d
q x

dxH i
d

q x
dx

  
  

   
 

 

has N  simple eigenvalues 1(0)k , 2 (0)k , … , (0)Nk  in the upper half-plane and 
possesses no spectral singularities. 
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To determine the operator  Af L  in (20), we follow the algorithm proposed by 

Ablowitz, Been, and Carr. We use the dispersion relation associated with the linear 
Riesz fractional modified Korteweg-de Vries-sine-Gordon equation 

   2

1 2 0xt x xxxxu p u p u   


,            (23) 

Substituting ( ( ) )( , ) i kx k tu x t e   into (23), we obtain the dispersion relation 

3 22
1( ) | |

p
k p k k

k
    

 
 . 

Taking into account the identity 
2 (2 )

( )
2f

k
k

k


  , 

we find that the operator  Af L  has the form given in (22). 

Theorem 5. Let ( , )q x t  be a solution of the Cauchy problem for the Riesz 
fractional modified Korteweg-de Vries-sine-Gordon equation, i.e., the problem (20)-
(21). Then, the time evolution of the scattering data associated with the Zakharov-
Shabat system (16) is satisfied by the differential equations: 

2( , )
2 ( ) ( , )f

k t
ik k k t

t

 
   


, \ {0}k , 

( )
0jdk t

dt
 , 1,2, ,j N  , 

2( )
2 ( ) ( )j

j f j j

dC t
ik k C t

dt
    , 1,2, ,j N  , 

where 2 2 22
12

( ) 4 | 2 |
4f

p
k p k k

k
    
 

 . 

The obtained results completely define the time evolution of the scattering data, 
which allows us to solve the problem (20)-(21).  

Let the initial function ( ,0)q x  be given.   
First, using the initial condition ( ,0)q x , we compute the scattering data (SD) of 

system (16) at 0t  : 

 ( ,0), , (0), (0), 1,2,..., ,j jk k k C j N    

Taking this set of scattering data at 0t   as the initial data, we solve the 
differential equations provided in Theorem 5 and obtain the time evolution of the 
scattering data for 0t  : 

 ( , ), , ( ), ( ), 1,2,...,j jk t k k t C t j N    

Using the obtained scattering data, we solve the system of integral equations (17) 
and (18) to determine the functions ( 2) ( , )jN x t , 1,2,...,j N . 

Then, by applying relation (19), the function ( , )q x t  is reconstructed; 

Finally, using the identity 
1

( , ) ( , )
2 xq x t u x t  we obtain the solution ( , )u x t  of 

equation (20). 
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Example 5. Consider equation (20) with the initial condition 

 0

2
( ,0)

2( )
q x

ch x x



, 

Using the algorithm described above, we obtain the solution ( , )q x t  in the form  

 2 2
40 1

2
( , )

2( ) 2 4 | 2 |( )p
q x t

ch x x p t


   
, 

Given that 
1

( , ) ( , )
2 xq x t u x t , one can reconstruct the solution  ( , )u x t  of equation 

(20) as follows 

  2 2
40 1( , ) 2arctan ( ) 2 4 | 2 |( )pu x t sh x x p t     . 

In the third paragraph of this chapter, the Riesz fractional-derivative variable-
coefficient modified Korteweg-de Vries-sine-Gordon equation is integrated by using 
the inverse scattering methods associated with the Zakharov-Shabat system. 

We consider the Riesz fractional-derivative variable-coefficient modified 
Korteweg-de Vries-sine-Gordon equation 

  0A

t f xq L q   , x , 0t  ,           (24) 

with the initial condition 

0( ,0) ( )q x q x , x ,             (25) 
here 1 2( ) (, 0)p t tp   are nonzero time-dependent functions, and 

    1

2 14 4 4( ) ( )A A A A

f L p p Lt tL L


   

,           (26) 

2
2

2

1

4
A

xL q q I q
x 


   


, 

x

I d y


  . 

To determine the operator  Af L  in (24), we follow the algorithm proposed by 

Ablowitz, Been, and Carr. We use the dispersion relation associated with the linear 
Riesz fractional modified Korteweg-de Vries-sine-Gordon equation 

   2

1 2( 0) ( )xt x xxxxu ut tp p u   


,            (27) 

Substituting ( ( ) )( , ) i kx k tu x t e   into (27), we obtain the dispersion relation 

3 22
1

)
( ) |

(
( ) |

p
k p k k

k

t
t    

 
 . 

Taking into account the identity 
2 (2 )

( )
2f

k
k

k


  , 

we find that the operator  Af L  has the form given in (26). 

Theorem 6. Let ( , )q x t  be a solution of the Cauchy problem for the Riesz 
fractional modified Korteweg-de Vries-sine-Gordon equation, i.e., the problem (24)-
(25). Then, the time evolution of the scattering data associated with the Zakharov-
Shabat system (16) is satisfied by the differential equations: 
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2( , )
2 ( ) ( , )f

k t
ik k k t

t

 
   


, \ {0}k , 

( )
0jdk t

dt
 , 1,2, ,j N  , 

2( )
2 ( ) ( )j

j f j j

dC t
ik k C t

dt
    , 1,2, ,j N  , 

where 2 2 22
12

( ) 4 |) 2 |
4

( )
(f

p
k p t k

t
k

k
    
 

 . 

In the third chapter of the dissertation, titled ”Integration of the hierarchy 
Kaup-Boussinesq equation with self-consistent sources” the integration of the 
hierarchy Kaup-Boussinesq equation is studied using the inverse scattering method. 
The main purpose of this chapter is to develop a integration algorithm for the variable-
coefficient and self-consistent-source forms of the hierarchy Kaup-Boussinesq 
equation for the spectral theory that comes from the quadratic pencil of Sturm-Liouville 
operators. The analysis is carried out by identifying the scattering data, deriving their 
time-evolution equations, and reconstructing the solutions through the inverse 
scattering approach. 

In the first paragraph of the first chapter,  the well-known information about the 
Maksudov-Guseynov method of solving the inverse scattering problem for the 
quadratic pencil of Sturm-Liouville equations is presented. 

We consider  

 2( ) ( ) 2 ( ) = 0, ,L k y y v x y ku x y k y x R       (28) 

where the functions ( )v x  and ( )u x  are real, moreover, ( )u x  is absolutely continuous 

and the inequalities hold:  

 | ( ) | < , (1 | |)[| ( ) | | ( ) |] < .u x dx x v x u x dx
 

 

      (29) 

Under condition (29), Eq. (28) for all k  from the half-plane 0Imk   has solutions 
( , ), ( , )f x k f x k   satisfying asymptotics  

 ( , ) = [1 (1)], ,ikxf x k e o x     ( , ) = [1 (1)], .ikxf x k e o x
      

For real 0k  , the pairs ( , ), ( , )f x k f x k   and ( , ), ( , )f x k f x k   form two 

fundamental systems of solutions to equation (1). The following relations hold  

 ( , ) = ( ) ( , ) ( ) ( , ),f x k b k f x k a k f x k     

 ( , ) = ( ) ( , ) ( ) ( , ),f x k b k f x k a k f x k      

 1
( ) = ( , ), ( , ) ,

2
a k W f x k f x k

ik     1
( ) = ( , ), ( , ) .

2
b k W f x k f x k

ik     

The function ( )a k  admits an analytic continuation to the half-plane > 0Imk  and 

can have at most a finite number of zeros 1 2, ,..., Nk k k , besides, at = , =1,2,...,nk k n N  

the following equality holds 
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 ( , ) = ( , ),n n nf x k B f x k
   

where the quantities nB
  are independent of x .  

Definition 6. The set of the quantities  

 1 2 1 2

( )
( ) = , \{0}, , ,..., , , ,...,

( ) N N

b k
r k k R k k k

a k
    



 
 

 
,  

and  

 1 2 1 2

( )
( ) = , \{0}, , ,..., , , ,...,

( ) N N

b k
r k k R k k k

a k
    



 
  

 
, (30) 

are called the left and right scattering data of Eq. (1), respectively, here 
1

=

( )
= | , = 1,2,...,n n k kn

da k
B n N

dk



   

 
 

. 

The problem of finding the coefficients ( )u x  and ( )v x  through the left or right 

scattering data is called the inverse problem for equation (28). 
We now turn to the question of constructing ( )u x  and ( )v x  from scattering data 

(30). 
We constructing the function ( )F x  using the given right scattering data as 

follows  

 
=1

1
( ) = ( ) .

2

N
ik x ikxn

n
n

F x i e r k e dk





 


     

Puting ( )F x  into the following integral equations  

 (0) (0)( ) ( , ) ( , ) ( ) = 0, < ,
x

F x y K x y K x F y d x y  


           

 (1) (1)( ) ( , ) ( , ) ( ) = 0, <
x

iF x y K x y K x F y d x y  


           

and solving them we find  0 ( , )K x y  and  1 ( , )K x y . Using these, we construct the 

following function  

 (0) (1)( , ) = ( , )cos ( ) ( , )sin ( ).K x y K x y x K x y x        

Here the function ( )x  is the solution of the following Volterra integral equation  

 ( ) = ( , ( )) , < < ,
x

x s s ds x 


      

where   
(0) (1)( , ) = R ( , ) Im ( , ) s 2s z e K s s K s s in z       

 (1) 2 (0) 22 R ( , ) s 2 I ( , ) c .e K s s in z m K s s os z           
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Finally, the coefficients ( )u x  and ( )v x  are determined as follows  

 ( ) = ( ),u x x   

     2( ) = ( ) 2 R ( , ) c ( ) I ( , ) s ( ) .
d

v x u x e K x x os x m K x x in x
dx

         

In the second section of the first chapter, we consider the following hierarchy 
Kaup-Boussinesq equation with a time-dependent coefficients  

 *( )t xU L U G    (31) 

under initial condition  

 0 0=0 =0
( , ) = ( ), ( , ) = ( ), ,

t t
v x t v x u x t u x x R  (32) 

where  

( , )

( , )

v x t
U

u x t

 
  
 

, 1

2

( , )

( , )

G x t
G

G x t

 
  
 

, 1( , ) ( ) xG x t t v , 2( , ) ( ) xG x t t u  

 

2

2

*

0 4 2

1 4 2

x

x

x

x

v v d
x

L

u u d









 
      

  
 




, (33)  

( )s  is any polynomial function of s  (whose coefficients may depend on time) and 

( )t  is an arbitrary prescribed continuous function. The functions 0( )v x , 0( )u x  are 

real and satisfy the following conditions:  
i)  0( )u x  is absolutely continuous and the following inequalities hold:  

 0| ( ) | <u x dx




 , 0 0(1 | |)[| ( ) | | ( ) |] <x v x u x dx




    (34) 

ii)  the quadratic pencil of Sturm-Liouville operators 
2

0 0(0, ) ( ) 2 ( ) = 0,L k y y v x y ku x y k y x R       

has exactly 2N  simple eigenvalues 1 2 2(0), (0),..., (0)Nk k k .  

Theorem 7. Let = ( , )v v x t  and = ( , )u u x t   be a solution of the problem for (31)-

(34).  Then, the time evolution of the scattering data associated with the quadratic 
pencil of Sturm-Liouville equations  ( , )T t k  is satisfied by the differential equations: 

( , )
2 [ (2 ) ( )] ( , )

dr t k
ik k t r t k

dt


    , ,k  

( )
0ndk t

dt
 , 1,2, , ,n N   

( )
2 [ (2 ) ( )] ( )n

n n n

d t
ik k t t

dt

  


   , 1,2, ,n N  . 
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The obtained results completely define the time evolution of the scattering data, 
which allows us to solve the problem (20)-(22).  

In the third paragraph of this chapter, the hierarchy Kaup-Boussinesq equation 
with a self-consistent source is integrated within the class of rapidly decaying 
functions. 

We consider equation  

 2( ) ( ) = 0, ,L k y y V k y x R      (35) 

where ( , ) = ( ) 2 ( )V x k v x ku x , and ( )v x , ( )u x  are continuously differentiable 

complex valued functions and the following inequalities hold:  

 2 ( ) ( ) < , | | ( ) ( ) < .x v x u x dx x v x u x dx
 

 

               (36) 

Under condition (36), Eq. (35) for all k R  has Jost solutions 1 1{ ( , ), ( , )}f x k g x k  

and 2 2{ ( , ), ( , )}f x k g x k  which satisfy the conditions  

 1 1( , ), ( , ) , , ,ikx ikxf x k g x k e e x      2 2( , ), ( , ) , , .ikx ikxf x k g x k e e x    

 For real 0k  , the pairs 1 1{ ( , ), ( , )}f x k g x k  and 2 2{ ( , ), ( , )}f x k g x k  form two 

fundamental systems of solutions to equation (35).  
The following relations hold  

2 11 1 12 1 2 12 1 11 1= , = ,f c f c g g d f d g   1 22 2 21 2 1 21 2 22 2= , = ,f c f c g g d f d g    

  1 1
12 21 1 2 11 22 2 1= = (2 ) [ , ], = = (2 ) [ , ],c c ik W f f c d ik W f g    

 1 1
12 21 2 1 11 22 1 2= = (2 ) [ , ], = = (2 ) [ , ],d d ik W g g d c ik W f g    

where 11 12 21 22 11 12 21 22, , , , , , ,c c c c d d d d  are independent on x . Moreover, the function 

21( )c k  admits an analytic continuation to the half-plane < 0Imk . We can take the point 

of view that (35) is a pair of equations (35)  having potentials ( , ) = ( , )V x k V x k  . 

Now all the above equations can be understood to have superscripts " " . 

21( ) ( < 0)c k Imk  each have a finite number of zeros N  , located at the points 

= , = 1,2,...,nk k n N  . 

Definition 7. The set of the quantities  

11

21

( )
( ) = , \ {0}, , , =1,2,...,

( ) n n

c k
R k k R k C n N

c k


    

  
  

is called the scattering data of Eq. (35), where  

1
11 21

=

= [ ( )] ( ) .n n
k kn

d
C c k i c k

dk
    



 
  

 

The coefficients ( )u x  and ( )v x  are uniquely recovered by the scattering data.  
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In the third paragraph of this chapter, the time evolution of the scattering data for 
the hierarchy Kaup-Boussinesq equation with a self-consistent source is derived, and 
an algorithm for solving the Cauchy problem for this equation via the inverse scattering 
method is presented. 

We consider the following hierarchy Kaup-Boussinesq system with a self-
consistent source  

 
*

2

( ) ,

( ) 2 0, 1,2, , ,

t x

m xx m m m

U L U G

k v k u m N 

  
         

 (37) 

under the initial condition  

  (38) 

and the normalizing conditions  

 2(2 2 ) = ( ), =1,2,..., ,m m mk u dx A t m N




  (39) 

where 

( , )

( , )

v x t
U

u x t

 
  
 

, 1

2

( , )

( , )

G x t
G

G x t

 
  
 

,  

2 2
1

1

( , ) 2 ( 2 )
N

x m m m
m

G x t u k u
x

 


      
 , 2

2
1

( , )
N

m
m

G x t
x







 , 

 

2

2

*

0 4 2

1 4 2

x

x

x

x

v v d
x

L

u u d









 
      

  
 




, (40)  

( )s  is any polynomial function of s  (whose coefficients may depend on time), 

1 1 2 2( , ), ( , ),..., ( , )N Nx t x t x t         are eigenfunctions corresponding to the 

eigenvalues 1 1 2 2= ( ), = ( ),..., = ( )N Nk k t k k t k k t , Im 0, =1,2,...,mk m N  of the 

equation (31).   Moreover, 1 2( ), ( ),..., ( )NA t A t A t  are given arbitrary continuous 

functions and 0 0( ), ( )v x u x   are complex valued functions satisfying conditions:   

1. 2
0 0 0 0( ) ( ) < , | | ( ) ( ) < ,x v x u x dx x v x u x dx

 

 

              (41) 

2.  The_quadratic_pencil_of_Sturm-Liouville_operators 
2

0 0(0, ) ( ) 2 ( ) = 0,L k y y v x y ku x y k y x R       

has exactly N  simple eigenvalues.  

0 0=0 =0
( , ) = ( ), ( , ) = ( ),

t t
v x t v x u x t u x x R
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Theorem 8. Let = ( , )v v x t  and = ( , )u u x t   be a solution of the problem for (37)-

(40).  Then, the time evolution of the scattering data associated with the quadratic 
pencil of Sturm-Liouville equations  ( , )T t k  is satisfied by the differential equations: 

( , )
2 ( ) ( , )

dR t k
ik k R t k

dt


    , ,k  

( )
0ndk t

dt



 , 1,2,...,n N  , 

( )
[2 ( ) 2 ( )] ( )n

n n n n n

dC t
ik k ik A t C t

dt


       , 1,2,...,n N  , 

( )
2 ( ) ( )n

n n n

dC t
ik k C t

dt


     , 1,2,...,n N  . 

The obtained results completely define the time evolution of the scattering data, 
which allows us to solve the problem (37)-(40).  

CONCLUSION 

This dissertation is devoted to the integration of nonlinear evolutionary partial 
differential equations with integer and fractional derivatives and with self-consistent 
sources within the class of rapidly decaying functions, using the direct and inverse 
scattering methods. 

The main results of the dissertation can be summarized as follows: 
Using the functional variable method, explicit soliton and periodic solutions of 

the modified Burgers equation with an additional term and variable coefficients, the 
fractional Kortewegde Vries equation with an additional term, and the fractional 
modified Korteweg-de Vries equation were obtained. 

The integrability of the fractional modified Korteweg-de Vries-sine-Gordon 
equation within the class of rapidly decaying functions was shown by applying the 
direct and inverse scattering methods for the associated Zakharov-Shabat system. 

The integrability of the hierarchy Kaup-Boussinesq equation with variable 
coefficients and a self-consistent source within the class of rapidly decaying functions 
was proved using the direct and inverse scattering methods for the quadratic pencil of 
Sturm-Liouville operators. 

The obtained results confirm that the objectives of the dissertation research have 
been fully achieved. All major findings contribute to the theory of integration of 
nonlinear evolutionary equations and enrich the mathematical framework of modern 
mathematical physics. 
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ВВЕДЕНИЕ (аннотация диссертации доктора философии(PhD)) 

Цель исследования: с помощью метода функциональных переменных 
получить солитонные и периодические решения модифицированного уравнения 
Бюргерса с переменным коэффициентом и дополнительным членом, дробного 
уравнения Кортевега-де Фриза с дополнительным членом и дробного 
модифицированного уравнения Кортевега-де Фриза, исследовать дробное 
модифицированное уравнение Рисса Кортевега-де Фриза-синус-Гордона 
методом прямой и обратной задачи рассеяния, а также интегрировать 
обобщённое уравнение Каупа-Буссинеска с переменными коэффициентами и 
согласованным источником в классе быстро убывающих функций. 

Задачи исследования: получить солитонные решения модифицированного 
уравнения Бюргерса с переменными коэффициентами и дополнительным 
членом с использованием метода функциональных переменных; 

найти солитонные и периодические решения дробного уравнения 
Кортевега-де Фриза с дополнительным членом и дробного модифицированного 
уравнения Кортевега-де Фриза посредством расширенного метода 
функциональных переменных; 

интегрировать дробное модифицированное уравнение Рисса Кортевега-де 
Фриза-синус-Гордона с применением метода прямой и обратной задач рассеяния 
для системы Захарова-Шабата; 

интегрировать обобщённое уравнение Каупа-Буссинеска с переменными 
коэффициентами и согласованным источником с использованием метода прямой 
и обратной задач рассеяния для квадратического пучка операторов Штурма-
Лиувилля. 

Научная новизна исследовательской работы состоит в следующем: 
с помощью метода функциональных переменных получены солитонные и 

периодические решения модифицированного уравнения Бюргерса с  
переменными коэффициентами и дополнительным членом, дробного уравнения 
Кортевега-де Фриза с дополнительным членом и дробного модифицированного 
уравнения Кортевега-де Фриза; 

доказана интегрируемость дробного модифицированного уравнения Рисса 
Кортевега-де Фриза-синус-Гордона в классе быстро убывающих функций 
посредством применения методов прямой и обратной задач рассеяния для 
системы Захарова-Шабата; 

доказана интегрируемость обобщённого уравнения Каупа-Буссинеска с 
переменными коэффициентами и согласованным источником в классе быстро 
убывающих функций с использованием методов прямой и обратной задач 
рассеяния для квадратического пучка операторов Штурма-Лиувилля. 

Внедрение результатов исследований. На основе полученных результатов 
по интегрированию нелинейных эволюционных уравнений частных 
производных с целыми и дробными производными и согласованным 
источником: 

Солитонные решения модифицированного уравнения Бюргерса с  
переменными коэффициентами и дополнительным членом и свойства 
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одномерных солитонных решений дробного модифицированного уравнения 
Рисса Кортевега-де Фриза-синус-Гордона, полученные посредством 
интегрирования средствами прямой и обратной задач рассеяния для системы 
Захарова-Шабата, были использованы в 2022-2023 годах в прикладном 
исследовательском проекте AL-42101210 “Система мониторинга 
инфраструктуры датчиков «Умного города»”, выполненном в Ургенчском 
филиале Ташкентского университета информационных технологий имени 
Мухаммада аль-Хоразмий под руководством доктора физико-математических 
наук А. Б. Яхшимуратова. Полученные результаты применялись при передаче 
сигналов без искажения их характеристик, снижении шумов и помех в 
сенсорных сетях, эффективном управлении амплитудой сигнала и скоростью 
передачи данных. 

Научные результаты, полученные при интегрировании обобщённого 
уравнения Каупа-Буссинеска с использованием методов прямой и обратной 
задач рассеяния для квадратического пучка операторов Штурма-Лиувилля, были 
внедрены в рамках фундаментального проекта Uzb-Ind-2021-80 “Исследование 
эффекта самонагревания в МОЯ-транзисторе на основе упорядоченных 
нанопластинок, заключённых в затвор”, выполненного в 2021-2023 годах в 
Ургенчском государственном университете имени Абу Райхона Беруни под 
руководством А. Э. Атамуратова. 

Эти результаты использовались для теоретического обоснования 
максимальной температуры, возникающей в центре канала нанопластинчатого 
МОЯ-транзистора, математического описания механизма локального теплового 
накопления в транзисторе, разработки алгоритмов моделирования взаимосвязей 
между тепловым потоком, плотностью тока, отношением Ion/Ioff и конструктивно-
геометрическими параметрами. 

Кроме того, они позволили математически обосновать начало и развитие 
процесса самонагревания во внутренних активных областях транзистора, 
предварительно оценить локальное накопление тепла, установить связь между 
тепловым распространением и конструктивно-геометрическими параметрами, а 
также разработать вычислительные и симуляционные методы для выбора 
оптимальных структурных параметров, обеспечивающих стабильную работу 
транзистора. 

Структура и объем диссертации. Диссертация состоит из введения, трех 
глав, заключения и списка использованной литературы. Объем диссертации 102 
страниц. 
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