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Abstract: The article provides information on the mathematical modeling of 

the incompressible viscous fluid in the pipe. The study shows laminar and turbulent 

regimes of fluid motion, as well as the physical meaning of these regimes. Consider a 

straight round pipe with a diameter constant along the entire length. The flow rate on 

the walls of the pipe due to adhesion is zero, in the middle of the pipe, it has the 

greatest value. A cylinder with a characteristic length and a characteristic radius 

inside the liquid whose axis coincides with the axis of the pipe is considered and the 

flow of the liquid through the cylinder is studied. The calculation formulas for 

calculating the maximum flow velocity in the cylinder, the volume of liquid passing 

through the cross-section of the pipe, the coefficient of resistance to friction in the 

pipe along the flow length, and the maximum value of the tangential stress are 

derived. The results of comparison of empirical and semi-empirical formulas for 

calculating the coefficient of resistance to friction are presented.  
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the friction force is the integral coordinate of the pipe, viscosity, density, bulk flow 

velocity, average speed, maximum speed, radius, Hook, Gegen, Poisal, Darcy-

Weisbach, Blasius, Nikuradse, the volume of fluid resistance coefficient. 

The presence of viscosity in liquids resists the movement of liquid layers 

relative to each other. In other words, in laminar (layered) flows due to the viscosity 

there is internal friction, it is expressed by the number of tangential stresses at the 

boundaries of the layers, or is characterized by the number of tangent forces relating 

to the unit area. Individual concentric layers of liquid relative to each other move so 

that the velocity of the liquid is directed in the direction of the main axis. The 

movement of this type of fluid is called laminar flow [1-12]. 

The flow of real liquids in many cases differs sharply from laminar flows. 

They have such a special property, which is called turbulence. In real flows, which 

occurs in pipes, channels and in the boundary layer with increasing values of the 

Reynolds number, the transition of the laminar flow to the turbulent one is clearly 

observed. Such transition of a laminar flow into a turbulent one is called turbulence 

and they play fundamental importance throughout hydrodynamics. Initially, such a 

transition was found in currents occurring in straight pipes and channels. 



 In a straight pipe with a smooth wall and a constant cross section, each particle of 

the liquid moves along a straight path at small Reynolds numbers. Due to the 

presence of viscosity of the liquid particles close to the wall move more slowly than 

away from the wall. The flow moves in the form of ordered layers moving relative to 

each other. However, observations show that at large Reynolds numbers, the flow 

passes into an unordered state or into a turbulent flow. There is a strong mixing in the 

liquid, this can be seen if you enter into the liquid moving in the pipe paint. Initially, 

the practical observation of this experience is carried out by O. Reynolds (1883-1912) 

in which the paint is introduced into the liquid[1].  

When the flow of laminar paint move in a well-defined trickle and as the flow 

becomes turbulent the paint spreads over the entire pipe and stains the weight of the 

liquid. This shows that, in a turbulent flow to the fluid moving along the axis of the 

pipe, a transverse movement acts, or a movement perpendicular to the axis of the 

pipe. This lateral movement causes mixing of the dye throughout the fluid [2-10]. 

The device for this experiment is shown in figure 1.  

 

 
Rice. 1. The experience in which the liquid is introduced into the paint 

 

The experiment begins with passing through the pipe d liquid with low speeds. At 

the same time, paint is supplied from the tank C through the tube E. This produces 

the following picture, the tinted trickle has the form of a straight horizontal line, and 



the rest of the moving fluid remains unpainted. Therefore, in this case, the particles of 

the tinted trickle are not mixed with the rest of the liquid, and the fluid flow mode in 

the pipe d is laminar. With a gradual increase in the speed in the pipe D, there comes 

a moment when the tinted trickle disappears and the entire moving liquid becomes 

uniformly colored. This indicates that the liquid particles in the flow are mixed, i.e. in 

the pipe D there is a turbulent regime. 

When the incompressible viscous fluid moves starting at the same value of the 

Reynolds number


ULRe , the laminar flow passes into a turbulent one, the same 

value of the Reynolds number is called the critical Reynolds number, where  -

density,   - viscosity of the liquid, U - the maximum velocity of the main flow,  L - 

the characteristic scale of the length. 

 

 
Rice. 2. The transition form laminar flow to turbulent 

 

From Fig. 2. it is seen that at, krtReRe  , laminar flow, and ReRe krt  and the flow goes 

into turbulent mode. 

 

We will consider the flow of liquid in a straight round pipe with a diameter 

constant along the entire length and consider the cylinder length L , and the radius y  

inside the liquid whose axis coincides with the axis of the pipe.  

The flow rate on the walls of the pipe due to adhesion is zero, in the middle of the 

pipe, it has the greatest value. At points of the cylindrical surfaces having axes 

coincident with the axis of the pipe, the flow velocity is constant. Individual 

concentric layers slide one over the other so that the velocity everywhere has an axial 

direction and the motion of this kind is called laminar flow. At a sufficiently large 

distance from the inlet to the pipe, the distribution of flow velocities along the radius 

does not depend on the coordinate in the longitudinal direction. 

The movement of fluid in the pipe occurs under the influence of the pressure drop 

in the direction of the pipe axis, but in each cross-section perpendicular to the pipe 

axis, the pressure can be considered as constant. The movement of each fluid element 

is accelerated due to the pressure drop and slowed down due to the shear stress 

caused by friction [2-12]. 

In the direction of the main axis on the cylinder are the forces of pressure 2
1 yp   and 

2
2 yp  , applied to the input and output bases of the cylinder , respectively, as well as 

the tangential force yL2 , acting on the side surface of the cylinder. It is required to 

determine the maximum velocity of the flow in the cylinder, the volume of fluid 



flowing through the cross section of the pipe, the coefficient of resistance of the pipe 

to friction along the length of the flow, as well as the maximum value of the 

tangential voltage. 

Equating the forces of the acting fluid in the cylinder, we obtain as a condition of 

equilibrium in the direction of motion equation (Fig.3.) 
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Fig. 3.  

 

The projection of the internal friction force is taken with a plus sign, because the 

velocity gradient is negative (the velocity of the layer decreases with increasing 

radius r )  

From the formula (1) we determine the tangent stress    
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In this case, the flow velocity u  decreases with increasing coordinate y  and is zero at 

ry  . Therefore, on the basis of the law of friction 
dy
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from here, you can see that 
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Now, given that ry   with velocity 0)( yu  and integrating equation (3) with this 

initial condition we have 
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to determine the constant C  of equation (4), use the condition 0)( ru  at ry  , or 
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from here you can see that 
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Substituting the value of the constant C  from (5) to equation (4) we have 
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And in turn, we obtain an equation to determine the flow rate of the following 

formula 
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Thus, we have a parabolic velocity distribution along the radius of the pipe (Fig. 4.). 

The greatest value of speed is in the middle of the pipe ( 0y ), where it is  
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Fig. 4. 

 

The total amount Q  of liquid flowing through the pipe section (fluid flow) is 

defined as the volume of the paraboloid of rotation (Fig.4.) and acreage is defined as 

follows. Equation (6) multiply and divide by 2r , 
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from here, you can see that 
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The total liquid flow through a pipe with a circular cross section on the basis of the 

Gagen-Poiseuille formula is determined as follows [1,3,7,8,11,12] 
r
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or given the formula (7), for the flow of liquid have the formula 
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Enter the average flow rate, the values of which are determined by the cross section 

of the pipe as follows: 
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Equation (10) with the formula (9) is written as  
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by comparing the function )(yu  with the maximum speed maxu  determined by the 

formula (7) it can be seen that max
2

1
)( uyu   or the average speed of the laminar flow in 

the pipe is half the maximum speed (Fig. 4). 

Determine the pressure difference )( 21 pp   
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from here we have  
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here rD 2  is the diameter of the pipe. 

The pressure loss along the flow length is determined by Darcy-Weisbach equation 
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here,  - is the hydraulic loss ratio along the length of the pipe or the resistance 

coefficient of the pipe. From the last equation we have 
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Substituting 21 pp   the value of the formula (11) in the equation (13) we obtain, for 

the resistance coefficient of the pipe following formula 
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or from here you can see that 

,
Re

64
   (14) 

Here is 


 Du
Re - Reynolds number. 

From the formula (12), we have  
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The tangential stress reaches its maximum value in the pipe wall, here this stress is 

determined by the formula. 
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this formula takes place regardless of which mode (laminar or turbulent) the flow is 

located. Thus, the tangential stress on the pipe wall is determined by measuring the 

pressure reduction experimentally. 

Substituting the value of 
L

pp 21   from formula (15) to formula (16) we have the 

following formula 
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This is the formula for calculating the maximum tangent stress. 

One of the methods for calculating turbulent flows is the use of empirical and 

semi-empirical formulas. To illustrate this, we give two best approximations for 

smooth pipes, and such indicate their limits of application by Reynolds number. 



In 1911 Blasius obtained an empirical formula for the resistance coefficient of 

smooth pipes (it is valid in the range 51042320  ): 
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this formula is known as the Blasius law of resistance. 

The formula of Nikuradse (it is applied on the interval 65 101101Re  ): 
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The range of variation of the reduced your critical Reynolds number, is in good 

agreement with the critical Reynolds number for plane-parallel flows 5770Re krt  

[2,13-20]. 

Results obtained by formulas (14),(18),(19) shown in Fig. 5. 

 

 
Fig.5.Resistance coefficient of smooth pipes. 1-laminar flow (Poiseuille), 2-turbulent 

flow (Blasius), 3-turbulent flow (Nikuradze),   - experimental data  

 

For fig.5. experimental and calculated results illustrating the dependence of the 

resistance coefficient of the pipe on the Reynolds number for smooth pipes are 

presented. The comparison of the results obtained shows that for small Reynolds 

numbers the theoretical formula (14) is confirmed by experimental data. The 

coincidence of the calculated and experimental results is observed before 

23202000Re  , with a further increase in the Reynolds number due to the active 

inclusion of turbulence mechanisms. Resistance is increasing. The subsequent 

dependence of the parameter   on the Reynolds number is very different from the 

results obtained for the laminar flow. 

Thus, it is shown that the motion of incompressible viscous flows in the channels, 

pipes and in the boundary layer can be laminar and turbulent modes and also, the 

physical meaning of these modes is indicated.  

This process is illustrated by the experience with a painted stream proposed by O. 

Reynolds. The formulas for calculating the maximum velocity of the liquid flow in 



the cylinder located inside the pipe, the volume of liquid flowing through the cross-

section of the pipe, the coefficient of resistance of the pipe to friction along the length 

of the flow, as well as for the maximum value of the tangential stress are derived.

 

References: 

1. Reynolds O. on the experimental investment of the circles which determine 

whether the motion of water shall be direct or sinuous, and the law of resistance in 

parallel channels // Phil. Trans.roy.soc. - 1883. - № 174. - P. 935-982. 

2. Abutaliev F. B., Narmuradov C. B. Mathematical modeling of the problem 

of hydrodynamic stability T.: publishing House "Fan va texnologiya", 2011. - 188 p. 

3. Loitsyansky L. G. Laminar boundary layer. – M:Fizmatlit, 1962. - 479 p. 

4. Schlichting G. Theory of boundary layer. - Moscow: Science, 1974. - 571 

p. 

5. Goldshtik M. A., Shtern V. N. Hydrodynamic stability and turbulence. –

Novosibirsk: Nauka, Sib. Release, 1977. - 366 p. 

6. Drazin F. Introduction to the theory of hydrodynamic stability. - M.: 

Fizmatlit, 2005. - 88 p. 

7. Thomas H. the stability of plane Poiseuille flow // Phys.Rev. - 1953. № 4 

(91). - P. 780-783. 

8. Patera A. T. A spectral element method for fluid dynamics: laminar flow in 

a channel expansion // J. Comp. Phys. -1984. - V. 54. - P. 468-488. 

9. Bakhvalov K. S. on optimization of methods for solving boundary value 

problems in the presence of a boundary layer. mod. and mod. Fiz. - Moscow, 1969. 

No. 4 (9). – Pp. 841-859. 

10. Loer St. Example of the stability of disturbed boundary-layer flow by a 

numeric method // Phys fluids. - 1969. - № 12 (12). - P. 139-143. 

11. Brown W. B. A stability criterion for there-dimensional laminar boundary 

layers // in: Boundary layer and flow control.  London, 1961. - vol.2. - P. 913-923. 

12. Goldshtik M. A., Sapozhnikov V. A. the Stability of laminar flow in the 

presence of mass forces, Izv. WOUND. Ser. Fluid and gas mechanics. - Moscow, 

1968. - № 5. - P. 42-46. 

13. Narmuradov Ch. B., Solov'ev A. S. On the influence of suspended 

particles on the stability of the flat of the Poiseuille flow // Izv. WOUND. Ser. Fluid 

and gas mechanics. - Moscow, 1986. - № 1. - P. 46-50. 

14. Narmuradov Ch. B., Solovyev A. S. the Stability of two-phase flow gas – 

solid particles in the boundary layer, Izv. WOUND. Ser. Fluid and gas mechanics. - 

Moscow, 1987. - № 2. - P. 60-64. 

15. Narmuradov Ch. B., Kuliev E. A., B. H. Khuzhaerov Stability of the 

boundary layer two-phase flows with the force of Stokes and Archimedes // Uzbek 

journal "problems of mechanics". - Tashkent, 1998. - № 4. - P. 13-17. 

16. Narmuradov Ch. B., A. G. Podgaev the convergence of the spectral – grid 

method // Uzbek mathematical journal, Tashkent, 2003. - № 2. - P. 64-71. 



17. Narmuradov Ch. B. On the effective method of solving the problem of 

hydrodynamic stability for two-phase flows // proc. Academy of Sciences of 

Uzbekistan. - Tashkent, 2004. - № 1. - P. 19-26. 

18. Narmuradov Ch. B. On an effective method of solving the equations of 

the Orr-Sommerfeld // Mathematical modeling. - Moscow, 2005. - № 9 (17). - P. 35-

42. 

19. Narmuradov of Ch. B. Range of values for the two-phase Poiseuille flow 

and the spatial dependence of characteristic parameters // Technics and technology. - 

Moscow, 2007. - № 5 (23). - P. 55-57. 

20. Narmuradov Ch. B. Mathematical modeling of the hydrodynamic 

problems for two-phase parallel flows // Mathematical modelling. - Moscow, 2007. - 

№ 6(19). 


