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The hyperbolic integro—differential acoustic equation is considered. Direct problem is to find the acoustic
pressure from the initial - boundary value problem for this equation with point source located on the
boundary of the space domain. The inverse problem is studied. It consists in determining the one-
dimensional kernel of the integral term using the solution of the direct problem at x = 0, t > 0. Inverse
problem is reduced to the system of integral equations for unknown functions. The principle of contraction
mappings is applied to this system in the space of continuous functions with weighted norms. The global

unique solvability of the inverse problem is proved.
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Introduction

Inverse problems for hyperbolic integro-differential equations have been studied by many au-
thors [1-5].The inverse problem for the second order hyperbolic equation was studied [1]. The
integral term is the convolution of one dimensional memory function of the medium and the solu-
tion of the direct problem. The inverse problem is reduced with the use of the Fourier method to
the system of integral equations of Volterra type with respect to unknown functions depending
on time variable. Problems in the determination of multidimensional kernel of viscoelasticity
equations were studied [2], [3] (see also the references there in). Problems of reconstructing a
one-dimensional kernel of the viscoelasticity equation in a bounded domain with constant Lame
coefficients and density were studied [4]. A similar problem was studied when Lame coefficients
and density are functions of x [5]. In the present work as in [2-5] the source initiating physical
process of wave transmission is localized on the boundary of considered space domain. Theo-
rem on local solvability of the inverse problem for the integro-differential equation of acoustics
was considered [6]. Global solvability of the inverse problem for integro-differential equation of
acoustics is studied in the paper.
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1. Statement of the problem and the main result

Let us consider an initial-boundary problem for integro-differential hyperbolic equation of the
type

1 0lnp(z)
ey = 0, — 2 E , >0, 1
CQ(Z)Utt Y 92 o, z> 0 >0 ( )
v li<0=0, o(+0,t) =&'(t), (2)

where ¢(z) > 0 is the wave speed, p(z) is the medium density, v(z,t) is the acoustic pressure,
¢’ (t) is the derivative of the Dirac function, and o(z,t) depends on v(z,t) as

t
o(z,t) = vy (z,t) + / k(t — m)v, (2, 7)dT. (3)
0
The inverse problem is to determine the kernel k(t), ¢ > 0 in (3) if
v(40,t) = g(t), ¢t>0. (4)

is known. Equation (1) takes into account the absorption of ideal-elastic medium, and it arises in
geophysics when properties of the medium is studied by seismic waves. Actually, with assumption
on smoothness Boltzmann system of equations (one of the most common for linear nonelastic
medium) in one dimensional case is reduced to equation (1).

Let us introduce, as in [5], new variable

o [
T =(z) /oc@)

and the following designations

Uz, ) =07 (@),1), a(x):=c(W (@), bl@):=p(" ().
Function ¢ ~1(x) is the inverse of ¥(z). It is assumed everywhere in this paper that c(z) > 0,

p(z) > 0. The main result of this work is the following theorem on common unique solvability
of the inverse problem.

Theorem. Let us assume that function g(t) is represented in the form
g(t) = —c(+0)6(t) + 0(t)g0(2),

where go € C%[0, T), and 0(t) is the Heaviside function. Furthermore, (c(z), p(2)t) € C?[0,4~1(T).
Then there exists a unique solution of the inverse problem (1)-(4), k(t) € C%[0, T] for any fived
T>0.

2. Reduction of the problem to a system
of integro-differential equations

Equalities (1)—(4) are written with respect to new functions v, a, b and variable x in the
following form

P _ ( 22 N(z) 0

o2 92 Maz) é):c) [5(x7t)+/0 k(t —7)o(z,7)dr|, >0, t>0 (5)

<

[\

U |t<o= 0, U (+0,t) + /Ot k(t — 7). (40, 7)dT = ¢(+0)d'(t), (6)
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v(40,t) = g(t), t >0, (7)

where A(z) := a(x)b(x). In what follows ¢(0), h(0), A(0) and so on mean values of corresponding
functions when z tends to 0 from right.

Now we transform integro-differentail equation (5) to exclude derivatives of function ¥ with
respect to x under the integral and to set coefficients of v; and v, in terms that outside the integral
to zero. These requirements can be satisfied by introducing the new function u as follows

k(0)t. [A(0)

{m,t) + /0 ke — T)a(x,f)dr] exp(~250 35 = w0

It is easy to verify that function v is expressed in terms of u as follows

v = |ex u(x t —T)ex 7/2)u(x, 7)dT M
o) = |exp (O)/2) ute0)+ [ hle = 1) exp (kO)7/2)ulo | [305)
where .
h(t) = —k(t) — / k(t — 7)h(r)dr. (8)
0
Taking into account u(x,t) and h(t), equations (5) — (7) are written in the form
Ut = Uge + A(T)u + /t k(t — 7)u(z, 7)dr, x>0, t >0, 9)
0
u|t<0 = O, (10)
s 1 N'(0)
Ug|o=r0 = c(0)0"(t) + §C(O)k(0)5(t) - T(O)U(O,t), (11)
u|x:+0 :f]o(t) —‘r/ h()(t—T)go(T)dT7 (12)
0
e 2(0) 2A(@)N" (@) — 3V (2))?
k(t) := h'"(t) exp <h(20)t) , Go(t) = g(t) exp <h(20)t) , ho(t) :== k(t) exp (h(;))t) :

It follows from the theory of hyperbolic equation that function u(z,t) as the solution of the
direct problem (9)—(12) has the property u =0, ¢ < x, > 0, and in the neighbourhood of the
characteristic line ¢t = = has the following structure

u(z,t) = a(z)d(t —x) + 0(t — x)a(x, t), (13)

where @(z,t) is the regular function.
We denote S(x) := a(x,z + 0). Substituting function (13) into equations (9)—(12) and us-

ing the method of singularity isolation [7, pp. 611-629|, we find o'(z) = 0, «(0) = —¢(0),
li
26’ (z) — A(x)a(z) =0, /(0) — B(0) + (0) 2)\)\(((()))) = %c(O)k‘(O). Solving these ordinary differen-

tial equations, we obtain

@ (k(O) + AAI((S)) + /0 ' A(g)dg) .
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Then it follows that function u(x,t) in the domain D := {(z,t) : t > x > 0} satisfies equations

Ty = Gigy + M2)T — c(+0)k(t — x) + /Ot k(t —7)a(z, 7)dr, & >0, t >0, (14)
ilt=z+0 = B(), (15)
Fm+;§aa@¢ﬂﬁ£—o, (16)
amﬂzgdw—dmmayﬁéhdﬂ%@—rmﬂt>o (17)

Requiring continuity of functions a(z,t), (0a/dz)(z,t), it is easy to express h(0), h'(0)
(z =t =0) from relations (15)—(17):

2 A'(0) 1 1 ~
h0) = ———Go(0) — =, K(0) = = (2h*(0) — A(0)) — —— (34(0 0)A(0
(0) = 7900~ gy 1(0) = 5(2H0) = A©)) = 75 (3(0) +Gu(0)n(0)
In order to obtain the last equalities the following relations are used
W (t) = —K(t) / K'(t — 7)h(7)dT,

R’ (0) = —k'(0) + k2(0).

They follow from (8). Further we substitute these relations for h(0), h’(0) into the expression

for A(z).
Let us introduce the following designations
A A0) Lo := §o(0) + ¢(0) Ao, L1 := go(0) — c(0)A
0—2)\(0), 0= 9o 0, L1:=49o 0,

L= 2 S(d6(0) = Xon(0))

—— Ly, L3:=—
(07 T 0
The proof of the theorem is based on the following lemma.

Lemma. Fulﬁlling the conditions of the theorem problem (14) — (17) for (z,t) € Dy, Dy =
((z,0)[0 <z <t < T —2) is equivalent to the problem of finding functions u(x,t), (0u/0t)(x,1),
k(t), ho(t), ho( ), ho () that satisfy the following system of equations:

u(z,t) =
/ /tt+x 5{ €)a(¢, ) — c(0)k(r 5)+/OT_£]~9(a)ﬂ(§aT_O‘)da}dﬂ%’ (18)

z+E€
et =Gt + 5 [ A lehite -l e+ 0 b+ oo+ e+
EHt—ate
[ ke it~ g e a)da]sgn(©)as. (19

b0 =g [4(5) 8 (5) -9 (5) [ 810 = rado)| 21500 + Lati(0)+ Lano+
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+ 25 [ gt - mno(ryar - 28 [ e = ha(rrar+
v 2 [ a0 w2050+ [ Hn 26— ryir| ac. o)
ho(t) = —h(0) + (}122(0) — h'(O)) t+ /Ot(t — 7)hg (T)dT, (21)
H(t) = h22(0) — 1 (0) +/0t hg (T)dT, (22)
BI(E) = k(1) + (hzio) (0)> hot) — /0 Rt — ) ho(r)dr (23)

Using the d’Alembert formula, we obtain equation (18) from equations (14)—(17), where
1
i (z,t) = 3 {gb(t + )+ go(t — ) — e(+0)(ho(t + ) + ho(t — )+

+ /OM ho(r)do(t + x — 7)d7 + /OM ho(7)do(t —  — T)dT] -

Ao

-2 t+w{g~0()_6(+o)ho /ho gO(T—a)dO{]dT

t—x
In order to get the equation for 4 (z,t) we use the equivalent description of the domain Dp

in equation (18):

u(z,t) =
/ / " Tl[ Ju(§, )—c(+o)15(r—§)+/(JT5%(04)@@,7_@)@}6@7_

Differentiating this equation with respect to ¢, after some simplifications we obtain equa-
tion (19).
Taking the limit ¢ — 2 4 0 in equation (18), we obtain

B(x) = oz, + 0)+
/ /21 T ,7) — e(+0)k(r — &) + /OT_gl%(a)a(g,r — a)da|drde.

Differentiating this equation two times with respect to z, after simple simplifications we
obtain equation (20).

To close the system of integral equations (18)—(20) equalities (21)—(23) are used [5]. They
follow from the definition of function ho(t) and equality (8). In fulfilling conditions the theorem,
equivalence of system of integral equations (18)—(23) and inverse problem (14)—(17) is established
by ordinary way [8]. Thus the lemma is proved.

3. Proof of the theorem

We present system of equations (18)—(23) in the form of operator equations
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o =Agp, (24)
where
_ [sol(x,t),¢2<x,t>,¢3<t>,¢4<t>,mt),soﬁ(t) -
[m + 8 holt-+2)+holt—2)), 5 1)+ S (6= 3 Lolholt-+2)+ Laho(t —)) +
)

G 2L,
2

c(0)
is the vector function with components p; (i = 1,2,3,4,5,6),

h?(0) h?(0)
2 4
Operator A is defined on the set of functions ¢ € C[Dy]. Taking into account equations (18) —
(23), it has the form

(hoy(t +x) 4+ hiy(t — x)), k(t) 4+ 2h( (t) + == )h(t) + Laho(t), ho(t), h(t), h(t) + k(t)

To :— — h/(O)7 oo ‘= — h/(O)

A= (A, Ay, Ag, Ay, As, Ag) -

1 t+x _ t—x ~
A1 = o1 + 2[/ <p4(r)go(t+x—7')dr+/ @4(T)go(t—x—r)dr}—
0 0

+ % " [c(+0)w4(T) - /OT pa(a)go(T — a)da} dr+

t—x

/ /tt:::[ (@1 §,2x—§) - @(@4(%) + pa(22 — 25)))0(0) (2%‘(7 —&)-

r—¢
~alr =+ Zen(r =+ Bagalr =)+ [ (20(@) — pale) + Zheata)+

0
0P
+ Lyga(a )( &T—O{—)((,04(7’—04—‘1-5)+(p4(7’—0¢—§)))d0{|d7‘d§, (25)

t—x t+x
Aggp:goog—i-%/o w4(T)g (t—x—T)dT—k;/o 04(7)9! o(t+x —T)dr—
2 [Tamdtera-nar+ [ [s@-ie) (e +0 - D oute e a—ieh+

+ea(€+t—a+Ig]))) —c(0) (2p0(E + =2+ [E) — pal€ +t —mH+IE) + i s(E+t— I+

2Lo
«0)”
Et—a+|é]
+ Lypa(§+t— x4+ [€]) + /0 (2<p6(a) —p3(a) + STLOO)%(OO + L3@4(a)) X
c(0)

(pr(o =l +-0) - S pu(e -t —l€D+ouls+ t - a = o + ) dolsmn(©)as. (20

Asp = po3 + 6(20 /0 pa(T - 02()(\)0)/0 pa(T)go(t — T)d+
t/2
(@2 2 (Looat) + Ligalt —26) — c(0)(5(1) + o5t — 26)) ) -
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- ‘3(20),5(2%(1: —2—a)—ps(t— 26— o) + %@5(75 — 26— ) + Lgpa(t — 26 = 0‘)>>df+
t/2
n % /0 <2¢6(t —26) — pa(t — 26) + %%(t —26) + Lapa(t - 25)>5(5)d5

t/2  pt—2¢
+ %/0 /o (Q%(a) — pa(a) + %@S(Q) " L3¢4(a)) )
X (‘92(5715— E—a)+ % ((L0<P4(t — &) + Lipa(t — 26 — o) — c(0) (05 (t — @) + 5 (t — 26 — a))>_

6 (200l - 26— 0) = galt - 26- )+ Zhionlt — 2= )+ Lagalt - 2~ o)) dads, 27)

A=t [ (6-7) (2%(7) — palr) + 2alr) + Lsm(T))dﬂ (28)
Asp = o5 +/0 <2806(7') —p3(7) + 3(%(3%(7') + L3<P4(T)>d7', (29)

App = pos — /0 (2906(15 —7) =3t —7)+ %@5@ —7)+ Lapa(t — T)) pa(T)dr, (30)

where the following notations are introduced

wo(z,t) = (¢o1, Yoz, P03, Poa, P05, Pos) ‘=

= B (ﬁo(t + x) 4 go(t — x)) Ao /ttﬂ go(7)dr, . (96(75 +a) 4 Go(t — ) + Ao(Jo(t — 2)—

2 Ji_. 2
~antt-+a) ) (20600 - 23501+ A (5)5(5) = 9 (5) ) =10 + ro 0] (31

Let C, be the Banach space of continuous functions. It is induced by family of weighted
norms

—o(t+(1+p)z)

wi(z,t)e ,1=1,2, sup |<pj(t)e_‘7t|,j:3,4,576},
]

lello = max{ sup
tel0,T

(z,t)eDr

020, pe(0,1)is some fixed number.
It is clear that when o = 0 this space is the space of continuous functions with ordinary norm.
Further we denote this norm by [|¢||. By virtue of

e el < llells < llell

norms ||¢||» and ||¢|| are equivalent for any fixed T € (0, 00). The number o will be chosen later.
Let Qo (w0, leoll) =: {#llle — volle < |l¢oll} be the radius of the ball ||¢g|| with centre at the
point g of some weighted space C, (o > 0), where function g is defined by (33) and

lloll = max {|[¢o1ll, llozll, llvoslls [voalls lleosll, lleosll;} -

It is easy to see that inequality ||¢lls < ||volle + [l@oll < 2||¢ol| takes place for ¢ € Q5 (w0, ||@oll)-
We prove that operator A is a contracting operator on the set Q. (o, ||¢ol|) if the number
o > 0 is appropriately chosen. Let p(z,t) € Qs(po,|l¢ol]). First we show that if ¢ > 0 is

- 759 —



Jurabek Sh. Safarov Global Solvability of the One-dimensional Inverse Problem. ..

appropriately chosen operator A translates ball to the ball, i.e., Ap € Qs (o, ||¢ol|). Actually,
with the help of equalities (27)—(32) we have

410 — poille = sup |(Arp — @o1)e 7P| =
(z,t)eDr
1 t+x
= sup — |:/ 804(7—)6_0-7— —o(t—7+(1+p)x) & (t +x— T)d7—+
(@.)enrl 2 Lo

t—x
+ / pa(r)e eI TTHIEA Gy — g ﬂch] -
0

A t+ax T
+ 3O |:C(O)(p4(7')€UTGU(tTJr(lJFP)w) — / 804(a)e—oaefa(t7a+(1+p)w)g~o(7_ — Oz)dOé:| dr+
t—x 0
t+ax—§
/ / [ ((pl(gﬂ_)ea(r+(1+p)£)eo(tT(1+p)5+(p+1)f6)_
t—xz+E€

c —O\(T— —0 T —Oo\T —Oo(l—T—
(2)(@4@_,5) (=€) =ot=T4E+149)2) 4 5, (7 4 £)e—o(T+E) §+<1+p>x>))_

—¢(0)(2p6(T — &) —p3(T — &) + 3(1(13%(7 — &) + Lapa (T — 5))6*”(7*5)e*"(t*”i*(lﬂ’)m)+

T=¢ 2L
+ / <2806(05) — gs(a) + =S ps5(a) + L3<P4(a)> X
0 c(0)
X e~ (¢1(57 7 — a)e (Tt (14p)E) g—o (t=r—(1+p)s+(14p)) _
. @ (@4(7_ —a+ g)e—a(-r—o&f)e—a(t—T—E-‘r(l-‘riﬂ)x)_i_
+ st —a— f)e*"(T*a*E)e*"(t*”g*(”p)z)))da} drdg‘ <

< @ [2Go(1+ 20T) + 20c(0) + Ao T (1 + c(0))+

+ 2L (e(0) + 27 ol (1 + ()] = 12, (32)

A2¢ — @ozlle = sup  |(Aap — pog)e o tHI+AD)| <

(z,t)eDr

< loll [2(:1 + X0 - Ao(1 +¢(0)) + Loo (<(0) Ao + 2l poll (T + 0(0)))} = ”ifon% (33)

g

| Az — @oslle = S[HP ] |(Asp — @o3)e™ 7| <
T

< ”ff” L(O) (AO(L1 +¢(0)) + Loo <B0 + [loll (4T + 3(Lo + ¢(0)) + 7;))+

Ay L
+ 4(G2 + XG1 + — + ;))4-6( YLooAoT + 2} H%H asz, (34)

1A — goalle = sup [(Asg — poa)e"] < 2120l pop - leoll (35)
t€[0,T) oz o

|As¢ — @oslle = sup [(Ase — pos)e” 7" < 2 ”(pO”Loo = ”%”015 (36)
t€[0,T) oz o
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40— punly = sup (Ao = oo)e™™| <2 20800 oo thy 4 o7+ 220072 g0 = 122 37)
te[0,T

Let ¢ > «g

QU(SDO,H@OH)'

Let now ¢!, ¢? be any two elements from Q, (o, ||¢ol|). Then carry out some easy estimations
we obtain

maz(ay, g, s, ag, as, ag), then A translates ball Q. (po, ||pol]) to ball

||(A<pl - A<p2)1||g = sup \(Agol . ASDQ)le—U(t-‘r(l-‘rp)x)l _
(Qf,t)EDQ

1 t+x
S| G d)e e g - ryars
0

sup
(z,t)eDr
t—x
+ /0 (0i(r) = @i(7))eTe 7 UmTHIEAD gyt — 2 — T)dT} -
Ao e 1 2 —o71 ,—o(t—7+(1+p)z)
£22 [ ) (ghir) - hm) e -
t—x

- [ (eht) = t@)eere et i — aydal dr+
0
1o e 1 > —o(r+(140)€) =0 (t—T—(1+p)€+(p+1)2)
+ 5 o Ji A(f) (@1(57 T) - (pl(ga T))e e -
. T) ((80411(7— N g) N @i(,}_ o 5))670(7'75)efa(tfr+€+(1+p)w)+
+ (Ph(r+8) = GAT +)e e ”(”5*““””))) -

— c0) (2(ehr =)~ ehr =) = (A4~ 9 = 3 — ) + P (ehr — )~ eilr — )+

+ La(ol(r — &) — 927 — ) —o(r=€) g=o(t=—T+E+(14p)o) |
#[[(26bte-300) ~ ()30 + 228 (o) ) +Eolhe)- @) )
y (QD%(& 7 — a)e=o (Tt 49O o lt—T—(+p)EH(4p)a) _

- (palr—atg)e oot eoli—r=EH 4 Ly (7 g)ea(ras>€a<tr+s+<1+p>m>>> N
+ (2sae(a) —p3(a) + Z—LO‘;%(@) + L3<p4(a))e_"°‘><
y ((@}(57 r—a) = e, — a))e oI o toT - (Ep)E(p)
- 0(70) ((Ph(r —a+8) = 3(r — a+ g))e7(TmotOemaltmrerama

(P = 0 = g - a - @)oottt ) o arde <

1,2
< lo™ —?llo
ag

[Go(l +XoT) + AO;(O) + %m +c(0))+

+ LT (e10) + 4T Nooll 1+ c(0)) | = 1205, (o
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[(Ap! — Ap®)oll, = sup |(Ap! — Ap?)pe o (tH14P)T)| <

(z,t)€D2
1_ 02, Ao+ Ag(1+ ¢(0 c(0 =l
<M= e [y 2t Bl cOD g (L bl ) |- LE= o )

(49" = Ap?)slls = sup [(Ap" — Ag)ge™""| <
te[0,T]

et = ¢l [2;0) <A0(L1 T e(0)) + Lo (Bo + 2|0 <4T +3(Lo +¢(0)) + T2>)+

a

2
Ao L 0 —o?||s
+ 4(G2 + XG1 + ?0 + ;>)+C(Q)L00A0T + 1} = Mﬁsa (40)

1_ .2 1,2
1A — AP)llo = sup [(Ag" — A?)se < W= Ellop p Mot =@Tlag 4y
t€(0,T] g g

1.2 12
I(Ag" — AP)sls = sup |(Ag" — A)set < N —Elap I = ela g (g9
t€[0,T] g o

1(Ap — Ap?)gll, = sup |(Ap! — Ap?)se | <
t€[0,T]

_r 1,2
< Mm[ho + 10T + 4LooT?|| o] = M% (43)

where Sy := max(B1, B2, B3, B4, Bs, Be)-

2L
Let us introduce the following designations in equalities (32)—(43) Lgo := 3+W3+L3’ Ag:=
c
max |A(z)|, By := ma , Go :=max |go(t)|, Gy := max |gy(t)|, G2 := max |g{(t)].
IE[O’;;Q]I (z)|, Bo me[oﬂz%]lﬂ(m)l 0 te[of%]'g(’( ) G te[o%lgo( )| Ga e, |96 (1))
Hence if o > By, then operator A performs contracting mapping on elements of the set
Qo (w0, [0l

It follows from above estimations that if the number ¢ is chosen from the condition
o > maz(agp, Bo), then operator A is contracting operator on Q. (o, ||©ol|). Then by Banach
principle equality (24) has in addition unique solution in Q, (o, [|¢o|) for any fixed T' > 0.
Since ho(t) = k(t) exp (h(0)t/2) then function k(¢) is defined as follows

k(t) = ho(t) exp (—h(0)t/2).
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I'mobasibHAsT pa3penimMocTh OTHOMEPHOII 0OpaTHOI 3aa4n
A maTerpoand epeHnmaabHOr0 ypaBHEHUS aKyCTUKA

2Kypabek I11. Cacdpapos

Nucturyr maremaruku nmenu B. . PomanoBckoro
Akanevmnn Hayk Pecriybinkn Y3bekucran

Mupzo Yayréeka, 81, Tarmkent, 100041

TamkeHTCKUI yHUBEPCUTET MHMOPMAIIMOHHBIX TEXHOJIOTUI
Awmupa Temypa, 108, Tamkent, 100200

V3bekucran

Pacemampueaemces eunepbosuneckoe unmezpoduddepenyuarvhoe ypasruernue akycmuru. Ipamyro 3ada-
wy npedcmasasem 3a0aua 0 HATOHCOEHUU GKYCMUNECKO20 JABAEHUA U3 HAUANDHO-KPAESOT 3a0aMU OAA
2M020 YPABHEHUA COCPEIOMOYEHHBIM UCTIOYHUKOM 6036YHCIEHUSA, DPACTLONONHCEHHDIM HA 2PAHUUE TPO-
cmpancmeennoti obaacmu. i npamot 3adanu u3ywaemca obpammas 3adaua, COCMOAULAA 6 onpede-
NEHUL 00HOMEPHO020 ADPG UHMEPAALHO20 “AeHa Mo u3secmHolt 6 mouke x = 0 das t > 0 peweruto
npamots 3adavu. Ima 3adaua c800UMCH K PEWEHUIO CUCTNEMDL UHMEZPAALHBIT YPABHEHUT, OMHOCUMEND-
HO HeudsecmHuir Pyrkuut. K nocaeduel 6 npocmpancmee HeNpepuervir GYHKUUL ¢ 6€C080T HOPMOTL
NPUMEHAECA NPUHUUN Cocamur omobpasicenuti. /loxaszana 2400a40HAA 00HOZHANHAA PA3PEULUMOCTVD
NOCMaBAeHHOT 3a0a4u.

Karoueswie caosa: unmeepo-ouppepernyuanrvtoie ypashenus, obpammuaan 3adaya, deavma-pynrkyua upa-
Ka, A0PO UHME2PANA, BECO6AA PYHKUUA.
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