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We consider a discrete-time dynamical system generated by a nonlinear operator (with
four real parameters a, b, c, d) of ocean ecosystem. We find conditions on the parame-
ters under which the operator is reduced to a �-Volterra quadratic stochastic operator
mapping two-dimensional simplex to itself. We show that if cd(c + d) = 0, then (under
some conditions on a, b) this �-Volterra operator may have up to three or a countable
set of fixed points; if cd(c + d) �= 0, then the operator has up to three fixed points.
Depending on the parameters, the fixed points may be attracting, repelling or saddle
points. The limit behaviors of trajectories of the dynamical system are studied. It is
shown that independently on values of parameters and on initial (starting) point, all
trajectories converge. Thus, the operator (dynamical system) is regular. We give some
biological interpretations of our results.

Keywords: Quadratic stochastic operator; Volterra operator; �-Volterra operator; ecosys-
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1. Introduction

An ecosystem is a community made up of living organisms and nonliving compo-
nents such as air, water and mineral soil.a

In ecosystems, the energy flows are somewhat difficult to measure and to
model. The most successful ecosystem models have concentrated on the balance of

∗Corresponding author.
ahttps://en.wikipedia.org/wiki/Ecosystem.
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essential elements such as carbon, nitrogen and phosphorus rather than explicitly
on energy [2, 6].

Following [2, 6], we consider an example of plankton in ocean limited by the
essential element nitrogen, and assume that the system is closed to nitrogen. Plank-
ton are of two kinds, phytoplankton, or plant plankton, which photosynthesis and
require essential elements, and zooplankton, or animal plankton, which feed on phy-
toplankton. It is assumed that all the action takes place in a well-mixed surface
layer of the ocean.

Let N be the concentration of nitrogen available for uptake, measured as mass
per unit surface area of the ocean, P the concentration of phytoplankton, and Z

the concentration of zooplankton, both measured in the same currency, i.e. as mass
of nitrogen incorporated in the plankton per unit surface area of the ocean.

Nitrogen (as dissolved gas or compounds) is taken up from the ocean and incor-
porated into phytoplankton. It is incorporated into zooplankton through consump-
tion of phytoplankton. It is recycled from the plankton of the ocean through death
and excretion.

In [1], the authors developed moment closure approximations to represent micro-
scale spatial variability in the concentrations of nutrients, phytoplankton and zoo-
plankton in an NPZ model. For the NPZ closure model the following are showed:
the stability domains increases with micro-scale variability, increases the biomass
of zooplankton, and the coefficient of variation of phytoplankton increases with
micro-scale variability.

At time moment t ≥ 0 the state of the ecosystem is given by the vector
(N(t), P (t), Z(t)).

In [2], the following model of ocean ecosystem processes is given:


dN

dt
= aP + bZ − cNP,

dP

dt
= cNP − dPZ − aP,

dZ

dt
= dPZ − bZ,

(1.1)

where a, b, c, d ∈ R, it follows from the system that

d

dt
(N + P + Z) = 0, so that N + P + Z = const.,

i.e. this is law of conservation of mass for nitrogen and this constant represents the
total concentration of nitrogen, both available for uptake (free) and incorporated
in the plankton (bound).

In this paper, we study the discrete time version of (1.1). This system is a
dynamical system generated by a 2-Volterra quadratic stochastic operator.
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Let us first give necessary definitions, then explain what is the main problem;
secondly we give the history of its solutions and then formulate the part of the
problem which we want to solve in this paper.

The quadratic stochastic operator (QSO) [9] is a mapping of the simplex.

Sm−1 =

{
x = (x1, . . . , xm) ∈ Rm : xi ≥ 0,

m∑
i=1

xi = 1

}
(1.2)

into itself, of the form

V : x′
k =

m∑
i=1

m∑
j=1

Pij,kxixj , k = 1, . . . , m, (1.3)

where the coefficients Pij,k satisfy the following conditions:

Pij,k ≥ 0, Pij,k = Pji,k,

m∑
k=1

Pij,k = 1, (i, j, k = 1, . . . , m). (1.4)

Note that each element x ∈ Sm−1 is a probability distribution on E =
{1, . . . , m}.

Thus, each quadratic stochastic operator V can be uniquely defined by a cubic
matrix P = (Pij,k)m

i,j,k=1 with conditions (1.4).
For a given λ(0) ∈ Sm−1 the trajectory (orbit)

{λ(n)}, n = 0, 1, 2, . . . of λ(0)

under the action of QSO (1.3) is defined by

λ(n+1) = V (λ(n)), where n = 0, 1, 2, . . . .

One of the main problem in mathematical biology consists in the study of the
asymptotical behavior of the trajectories. The difficulty of the problem depends on
given matrix P. One of simple cases is Volterra QSO, i.e. the matrix P satisfies

Pij,k = 0 if k /∈ {i, j} for any i, j ∈ E = {1, . . . , m}. (1.5)

In [4], the theory for Volterra QSO was developed by using the theories of the
Lyapunov function and of tournaments. But non-Volterra QSOs (i.e. not satisfying
condition (1.5)) were not exhaustively studied, because there is no general theory
that can be applied to the study of non-Volterra operators. There are a few papers
devoted to such operators see, for example, [5, 7–10]. The operator which we are
going to study in this paper is another example of non-Volterra operators.

�-Volterra QSO. Fix � ∈ {1, . . . , m} and assume that elements Pij,k of the matrix
P satisfy

Pij,k = 0 if k /∈ {i, j} for any k ∈ {1, . . . , �}, i, j ∈ E;

Pij,k > 0 for at least one pair (i, j), i �= k, j �= k for any k ∈ {� + 1, . . . , m}.
(1.6)
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Definition 1 ([8]). For any fixed � ∈ {1, . . . , m}, the QSO defined by (1.3), (1.4)
and (1.6) is called �-Volterra QSO.

Definition 2. A QSO V is called regular if for any initial point λ(0) ∈ Sm−1, the
limit

lim
n→∞V n(λ(0))

exists.

We consider a model of discrete time process of ocean ecosystem (1.1), which
has the following form:

V :




x(1) = x(1 − b + dy),

y(1) = y(1 − a − dx + cz),

z(1) = z(1 − cy) + ay + bx,

(1.7)

where x = Z, y = P, z = N , a, b, c, d ∈ R.
The set of limit points of trajectory is important in the theory of dynamical

systems. The main problem of our investigation is to study the set of limit points
of trajectories of the operator (1.7).

A fixed point p for a mapping F : Rm → Rm is a solution to the equation
F (p) = p. By the continuity of the operator V (1.7) its limit points are fixed points
for the operator V .

The paper is organized as follows. In Sec. 2, we reduce our operator to a 2-
Volterra operator mapping S2 to itself and compare it with known 2-Volterra oper-
ators. Section 3 is devoted to dynamical systems of the operator when cd(c+d) = 0.
In this case, it is shown that the set of fixed points may be an uncountable set. For
some values of parameters we find limit points of the trajectories depending on the
initial points. The case cd(c+d) �= 0 is considered in Sec. 4, we show that there are
up to three fixed points, limit points of all trajectories of the operator are given.
In general, we show that all trajectories converge, this means that the operator is
regular. In the last section, we give some biological interpretations of our results.

2. Reduction to 2-Volterra QSO

Note that the operator (1.7) has a form of 2-Volterra QSO, but the parameters of
this operator are not related to Pij,k. Here, to make some relations with Pij,k we
find conditions on parameters of (1.7) rewriting it in the form (1.3). It is easy to
see that x(1) + y(1) + z(1) = x + y + z, to embed a vector (x, y, z) in the set S2 we
assume x + y + z = 1 and x, y, z ≥ 0.

Using x + y + z = 1, the system (1.7) can be written as the following:


x(1) = x[(1 − b)x + (1 − b + d)y + (1 − b)z],

y(1) = y[(1 − a − d)x + (1 − a)y + (1 − a + c)z],

z(1) = z[x + (1 − c)y + z] + ay + bx.

(2.1)
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Third equation of the system (2.1) can be written as the following:

z(1) = z[x + (1 − c)y + z] + ay(x + y + z) + bx(x + y + z)

= z[(1 + b)x + (1 + a − c)y + z] + bx2 + (a + b)xy + ay2. (2.2)

We consider (1.3) for the case m = 3


x(1) = P11,1x
2 + 2P12,1xy + 2P13,1xz + 2P23,1yz + P22,1y

2 + P33,1z
2,

y(1) = P11,2x
2 + 2P12,2xy + 2P13,2xz + 2P23,2yz + P22,2y

2 + P33,2z
2,

z(1) = P11,3x
2 + 2P12,3xy + 2P13,3xz + 2P23,3yz + P22,3y

2 + P33,3z
2.

(2.3)

From Eq. (2.2) and by the systems (2.1) and (2.3), we have the following
relations:

P11,1 = 1 − b, 2P12,1 = 1 − b + d, 2P13,1 = 1 − b, P23,1 = P22,1 = P33,1 = 0

P22,2 = 1 − a, 2P12,2 = 1 − a − d, 2P23,2 = 1 − a + c,

P11,2 = P13,2 = P33,2 = 0, P11,3 = b, 2P12,3 = a + b, 2P13,3 = 1 + b,

2P23,3 = 1 + a − c, P22,3 = a, P33,3 = 1.

(2.4)

Proposition 1. The operator (1.7) maps S2 to itself if and only if

0 ≤ a ≤ 1, 0 ≤ b ≤ 1, −(1 − a) ≤ c ≤ 1 + a, −(1 − b) ≤ d ≤ 1 − a. (2.5)

Moreover, under condition (2.5) and a + b �= 0 the operator is a 2-Volterra QSO.

Proof. The proof consists solving of simple inequalities which are obtained from
conditions (1.4) and (1.6) for Pij,k given by equalities (2.4).

Remark 1. If a = b, c = 0, d = 0 then the operator (1.7) coincides with operator
(5.1) in [9]. By the condition (5.3) in the paper [9] and by the (2.4), we have the
following:

P11,1 = P22,2 ⇒ a = b,

P12,1 = P12,2 ⇒ d = 0,

P13,1 = P23,2 ⇒ c = 0.

Remark 2. In the sequel of the paper, we consider operator (1.7) with four parame-
ters a, b, c, d which satisfy condition (2.5). This operator maps S2 to itself and we are
interested to study the behavior of the trajectory of any initial point (x, y, z) ∈ S2

under iterations of the operator (1.7).
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3. Case cd(c + d) = 0

3.1. Case: c = d = 0

In this case the operator (1.7) becomes a linear operator

V :




x(1) = x(1 − b),

y(1) = y(1 − a),

z(1) = z + ay + bx.

(3.1)

3.1.1. Case: a = b = 0

In this case the operator is id map, i.e. V (x, y, z) = (x, y, z).

3.1.2. Case: a �= 0, b = 0

We have

lim
n→∞V n(x, y, z) = lim

n→∞(x(n), y(n), z(n)) = lim
n→∞(x, (1 − a)ny, z(n)) = (x, 0, 1 − x),

(3.2)

thus in this case there are infinitely many fixed points (x, 0, 1−x) and the trajectory
started at any initial point (x, y, z) has the limit point (x, 0, 1 − x).

The case a = 0, b �= 0 is similar, and the limit point is (0, y, 1 − y).

3.1.3. Case: ab �= 0

In this case the operator has a unique fixed point (0, 0, 1). Moreover, for any initial
point (x, y, z) ∈ S2, we have

lim
n→∞V n(x, y, z) = lim

n→∞(x(n), y(n), z(n)) = (0, 0, 1), (3.3)

with x(n) = (1 − b)nx, y(n) = (1 − a)ny.

3.2. Case: c = 0, d �= 0

In this case the third coordinate of the operator has a linear form:


x(1) = x(1 − b + dy),

y(1) = y(1 − a − dx),

z(1) = z + ay + bx.

(3.4)

3.2.1. Case: a = b = 0

To find fixed points we solve V (x, y, z) = (x, y, z), i.e.

x = x(1 + dy), y = y(1 − dx), z = z.
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This system has infinitely many solutions, i.e. the following are the set of fixed
points:

F1 = {(x, y, z) ∈ S2 : y = 0}, F2 = {(x, y, z) ∈ S2 : x = 0}.
For the trajectory (x(n), y(n), z(n)), we have


x(n+1) = x(n)(1 + dy(n)),

y(n+1) = y(n)(1 − dx(n)),

z(n+1) = z(n) = z,

(3.5)

i.e. the third coordinate does not depend on n, i.e. z(n) = z. Now, using x(n)+y(n)+
z(n) = 1 from the first equality of (3.5), we get x(n+1) = x(n)(1+d(1−x(n)−z)), thus
the behavior of x(n) is given by the one-dimensional dynamical system generated
by the function

f(x) = x(1 + d(1 − x − z)) = −dx2 + [1 + d(1 − z)]x, x ∈ [0, 1],

where d and z are considered as parameters.
Note that f(x) has two fixed points x = 0 and x = 1 − z.
Assume d > 0 then f ′(0) = 1 + d(1 − z) > 1, z �= 1 (note that z = 1 gives the

fixed point (0, 0, 1)), and f ′(1−z) = 1−d(1−z) < 1. Hence 0 is repelling and 1−z

is attracting fixed point for f . To find two-periodic points of f(x) one has to solve
f(f(x)) = x. Note that the fixed points of f also solutions to f(f(x)) = x. To find
the two-periodic points different from the fixed points one has to solve

f(f(x)) − x

f(x) − x
= 0.

This equation is a quadratic equation whose discriminant is D = d2(z−1)2−4 < 0,
for any d ∈ [−1, 1] and z ∈ [0, 1]. Therefore, the function f has no any two periodic
point (different from fixed points) then by Sarkovskii’s theorem (see [3, p. 62]) f

has no any periodic (except fixed) point. For initial point (x, y, z) we have x =
1− y− z ≤ 1− z, moreover, for d > 0 from (3.5) one can see that x(n) is increasing,
therefore it has a limit. Thus 1 − z is globally attracting, i.e. for any initial point
x ∈ (0, 1] we have limn→∞ x(n) = 1 − z.

Similarly in case d < 0, we have 0 is attracting and 1− z is repeller fixed point
for f . Moreover, for any initial point x ∈ [0, 1), we have

lim
n→∞x(n) = 0.

Thus, if d > 0 (respectively d < 0) then for any initial point (x, y, z) ∈ S2 we
have the following:

lim
n→∞V n(x, y, z) = lim

n→∞(x(n), y(n), z(n)) = (1 − z, 0, z) (respectively (0, 1 − z, z)),

(3.6)

because in this case there is no fixed points in intS2 = {(x, y, z) ∈ S2 : xyz > 0}.

1950015-7



February 27, 2019 15:3 WSPC S1793-5245 242-IJB 1950015

U. A. Rozikov & S. K. Shoyimardonov

3.2.2. Case: a = 0, b �= 0

Then the operator (1.7) has the following form:


x(1) = x(1 − b + dy),

y(1) = y(1 − dx),

z(1) = z + bx.

(3.7)

It is easy to see that the operator (3.7) has infinitely many fixed points given by
the following set:

F3 = {(x, y, z) ∈ S2 : x = 0}.
Moreover, it does not have a fixed point outside of F3.

We have z(1) = z+bx ≥ z, consequently z(n+1) ≥ z(n), i.e. z(n) increasing. Since
z(n) ≤ 1 it has a limit.

In addition, if d > 0 (respectively d < 0) then y(1) = y(1−dx) ≤ y (respectively
x(1) = x(1 − b + dy) ≤ x), consequently, y(n) (respectively x(n)) is decreasing
sequence and it has a limit point. Hence, for any initial point (x, y, z) ∈ S2 there
exists the limit

lim
n→∞V n(x, y, z) = lim

n→∞(x(n), y(n), z(n)) = (0, ȳ, 1 − ȳ), (3.8)

because all limit points are fixed points belong to the set F3, where limn→∞ y(n) = ȳ.

3.2.3. Case: a �= 0, b = 0

This case is similar to the previous case the operator (1.7) has the form


x(1) = x(1 + dy),

y(1) = y(1 − a − dx),

z(1) = z + ay.

(3.9)

The operator (3.9) also has the following infinite set of fixed points:

F4 = {(x, y, z) ∈ S2 : y = 0}.
Here, also z(1) = z + ay ≥ z so z(n) increasing, if d > 0 then x(1) = x(1 + dy) ≥ x,
y(1) = y(1 − a − dx) ≤ y and x(n) increasing, y(n) decreasing. If d < 0 then
x(1) = x(1 + dy) ≤ x so x(n) decreasing sequence. Hence, for any initial point
(x, y, z) ∈ S2, we have

lim
n→∞V n(x, y, z) = lim

n→∞(x(n), y(n), z(n)) = (x̄, 0, 1 − x̄), (3.10)

because all fixed points belong to the set F4, where limn→∞ x(n) = x̄.

Remark 3. In limits (3.8) and (3.10) we only know existence of ȳ and x̄. Of course,
these values depend on the initial point (x, y, z), i.e. ȳ = ȳ(x, y, z) and x̄ = x̄(x, y, z).
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But finding an explicit form of these values seems difficult problem. This problem
can be reduced to following nonlinear recursive equations:

For finding of z(n) in (3.8):

z(n+2) = −d

b
(z(n+1))2 +

(2 − b)d
b

z(n+1)z(n) − (1 − b)d
b

(z(n))2 + (2 − b + d)z(n+1)

− (1 − b + d)z(n), (3.11)

where z(0) = z and z(1) = z + bx.
For finding of z(n) in (3.10):

z(n+2) =
d

a
(z(n+1))2 − (2 − a)d

a
z(n+1)z(n) +

(1 − a)d
a

(z(n))2 + (2 − a − d)z(n+1)

− (1 − a − d)z(n), (3.12)

where z(0) = z and z(1) = z + ay. To the best of our knowledge there is no any
general method to solve these recursive equations (with given initial values). But
formulas (3.11) and (3.12) are useful for using of a computer program.

3.3. Case: c �= 0, d = 0

In this case the system (1.7) has the form


x(1) = x(1 − b),

y(1) = y(1 − a + cz),

z(1) = z(1 − cy) + ay + bx.

(3.13)

For the operator (3.13) fixed points are

F5 =




(0, 0, 1) if b �= 0, c < 0

{
(0, 0, 1),

(
0, 1 − a

c
,
a

c

)}
if b �= 0, c > 0

{
(x, 0, 1 − x),

(
x, 1 − x − a

c
,
a

c

)}
if b = 0, c > 0.

{(0, 0, 1), (x, 0, 1− x)} if b = 0, c < 0.

3.3.1. Case: b = 0

Then x(n) = x for any x ∈ [0, 1], consequently

y(n+1) = y(n)(1 − a + c(1 − x − y(n))).

Hence y(n) is given by a dynamical system of

g(y) = y(1 − a + c(1 − x − y)) = −cy2 + (1 − a + c(1 − x))y,
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where a, c, x are parameters. This function has two fixed points: y = 0 and y =
y∗ = 1 − x − a

c . If c > 0 then 0 is repelling and y∗ is attracting fixed point for g.
Moreover, for any initial point y ∈ (0, 1], we have

lim
n→∞ y(n) = y∗.

Similarly in case c < 0, we have 0 is attracting and y∗ is repeller fixed point for
g. Moreover, for any initial point y ∈ [0, 1), we have

lim
n→∞ y(n) = 0.

Thus, if c > 0 (respectively c < 0) then for any initial point (x, y, z) ∈ S2 we
have the following:

lim
n→∞V n(x, y, z) = lim

n→∞(x(n), y(n), z(n))

= (x, y∗, 1 − x − y∗) (respectively (x, 0, 1 − x)). (3.14)

3.3.2. Case: b �= 0

Then x(n) = (1 − b)nx and when c ≤ a, (0, 0, 1) unique fixed point, y(1) = y(1 −
a + cz) ≤ y, i.e. the sequence y(n) is monotone decreasing so for any initial point
(x, y, z) ∈ S2

lim
n→∞(x(n), y(n), z(n)) = (0, 0, 1).

If c > a then the set

H =
{
(x, y, z) ∈ S2 : z >

a

c

}
is an invariant. Indeed, if z > a

c then

1 − x − y >
a

c
⇔ cy < c − a − cx ⇔ 1 − cy > 1 − (c − a) + cx > 0

⇔ z(1) = z(1 − cy) + ay >
a

c
.

It is easy to see that if initial point (x, y, z) ∈ H then the sequence y(n) has limit
as an increasing and bounded sequence, if (x, y, z) /∈ H then for y(n) we have two
possibilities: stays outside of H and decreasingly goes to 1 − a

c ; after finite steps
goes inside of H and increasingly converges to the same limit.

Hence, for any initial point (x, y, z) ∈ S2, we have

lim
n→∞(x(n), y(n), z(n)) =




(
0, 1 − a

c
,
a

c

)
, if y > 0,

(0, 0, 1), if y = 0.

(3.15)
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3.4. Case: c = −d �= 0

Here, the operator (1.7) has the form


x(1) = x(1 − b − cy),

y(1) = y(1 − a + cx + cz),

z(1) = z(1 − cy) + ay + bx.

(3.16)

For the operator (3.16) fixed points are

F6 =




(0, 0, 1) if c ≤ a, b �= 0,

{(x, 0, 1 − x)} if c ≤ a, b = 0,{
(0, 0, 1),

(
0, 1 − a

c
,
a

c

)}
if c > a, b �= 0,

{
(x, 0, 1 − x),

(
0, 1 − a

c
,
a

c

)}
if c > a, b = 0.

3.4.1. Case: 0 < c ≤ a

Then x(1) = x(1− b− cy) ≤ x, y(1) = y(1−a+ cx+ cz) = y(1− (a− c(x+ y))) ≤ y,
i.e. the sequences x(n) and y(n) are decreasing.

3.4.2. Case: c ≤ a, c < 0

Then y(1) = y(1−a+ cx+ cz) ≤ y, z(1) = z(1− cy)+ay + bx ≥ z, i.e. the sequences
y(n) and z(n) are monotone. Thus, if b �= 0 then for any initial point (x, y, z) ∈ S2,
we have

lim
n→∞(x(n), y(n), z(n)) = (0, 0, 1) (3.17)

(since (0, 0, 1) is unique fixed point).
If b = 0 then for any initial point (x, y, z) ∈ S2

lim
n→∞(x(n), y(n), z(n)) = (x̃, 0, 1 − x̃), (3.18)

where limn→∞ x(n) = x̃.

3.4.3. Case: c > a

In the case c > a for any (x, y, z) ∈ S2, we have (this is a particular case of
Theorem 2 given in the next section)

lim
n→∞(x(n), y(n), z(n)) =




(0, 0, 1), if y = 0, b �= 0,

(x, 0, 1 − x), if y = 0, b = 0,(
0, 1 − a

c
,
a

c

)
, if y > 0.

(3.19)

Thus independently on parameters a, b, c, d and initial point (x, y, z) the limit of tra-
jectory exists. Summarizing above mentioned results (i.e. (3.2), (3.3), . . . , (3.19)),
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we get

Theorem 1. If cd(c + d) = 0 then for any (x, y, z) ∈ S2, we have

lim
n→∞ V n(x, y, z) =




(x, y, z), if a = b = c = d = 0,

(x, 0, 1 − x), if a �= 0, b = c = d = 0,

(0, y, 1 − y), if a = c = d = 0, b �= 0,

(0, 0, 1), if ab �= 0, c = d = 0,

(1 − z, 0, z), if a = b = c = 0, d > 0,

(0, 1 − z, z), if a = b = c = 0, d < 0,

(0, ȳ, 1 − ȳ), if a = c = 0, bd �= 0,

(x̄, 0, 1 − x̄), if b = c = 0, ad �= 0,(
x, 1 − x − a

c
,
a

c

)
, if c > 0, b = d = 0,

(x, 0, 1 − x), if b = d = 0, c < 0,

(0, 0, 1), if b �= 0, c ≤ a, d = 0, or y = 0,(
0, 1 − a

c
,
a

c

)
if b �= 0, c > a, d = 0, y > 0,

(0, 0, 1), if b �= 0, c = −d �= 0, 0 < c ≤ a,

(x̃, 0, 1 − x̃), if b = 0, c = −d �= 0, c ≤ a,

(0, 0, 1), if b �= 0, c = −d, a < c, y = 0,

(x, 0, 1 − x), if b = 0, c = −d, a < c, y = 0,(
0, 1 − a

c
,
a

c

)
if a < c, y > 0,

where x̄, ȳ and x̃ are some functions of the initial point (x, y, z).

4. Case cd(c + d) �= 0

4.1. Fixed points of the operator (1.7)

Definition 3 ([3]). A fixed point p for F : Rm → Rm is called hyperbolic if the
Jacobian matrix J = JF of the map F at the point p has no eigenvalues on the unit
circle.

There are three types of hyperbolic fixed points:

(1) p is an attracting fixed point if all of the eigenvalues of J(p) are less than one
in absolute value.
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(2) p is an repelling fixed point if all of the eigenvalues of J(p) are greater than one
in absolute value.

(3) p is a saddle point otherwise.

To find fixed points of operator V given by (1.7), we have to solve V (x) = x,
i.e. 


x = x(1 − b + dy),

y = y(1 − a − dx + cz),

z = z(1 − cy) + ay + bx.

(4.1)

Lemma 1. The fixed points of the operator (1.7) are

λ̄0 = (0, 0, 1), λ̄1 =
(
0, 1 − a

c
,
a

c

)
(c ≥ a, c �= 0),

and

λ̄2 =
(

cd − ad − bc

d(c + d)
,
b

d
,
a − b + d

c + d

)
,

where there are conditions to the parameters, in other words we consider all coor-
dinates of λ̄2 between 0 and 1:

d > 0, d ≥ b, a − b ≤ c, c ≥ 0, cd − ad − bc ≥ 0. (4.2)

Proof. Consider the following cases:

Case: x = 0, y = 0. It is easy to see from (4.1) that (0, 0, 1) is a fixed point.

Case: x = 0, y �= 0. From (4.1), we get system of equations

x = 0, y(1 − a + cz) = y, z(1 − cy) + ay = z,

which has a unique solution (0, 1 − a
c , a

c ) for c > 0, c ≥ a.

Case: x �= 0, y = 0. In this case, we do not have fixed point, because from the
first equation of (4.1), we get x = x(1− b) which has no nonzero solution for b �= 0.

Case: x �= 0, y �= 0. In this case the system (4.1) is reduced to the system

1 = 1 − b + dy, 1 = 1 − a − dx + cz, z = z(1 − cy) + ay + bx

from which we get the third fixed point ( cd−ad−bc
d(c+d) , b

d , a−b+d
c+d ).

By using x + y + z = 1 in (1.7), we obtain the following mapping:

W :

{
x′ = x(1 − b + dy),

y′ = y(1 − a + c − (c + d)x − cy),
where x + y ≤ 1. (4.3)

For the operator W there are three fixed points with conditions (4.2)

λ0 = (0, 0), λ1 =
(

0,
c − a

c

)
(c > 0, c ≥ a), and λ2 =

(
cd − ad − bc

d(c + d)
,
b

d

)
.
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Proposition 2. The following relations are true:

(1)

λ0 =




nonhyperbolic, if b = 0 or a = c,

attractive, if a > c,

saddle, if a < c,

(2)

λ1 =




nonhyperbolic, if a = c or b = d
(
1 − a

c

)
,

attractive, if b > d
(
1 − a

c

)
,

saddle, if b < d
(
1 − a

c

)
,

(3)

λ2 =

{
nonhyperbolic, if b = 0 or c ≤ a or cd − ad − bc = 0 or b = d,

attractive, if c > 0, c > a, d > b > 0, cd − ad − bc > 0.

Proof. (1) Note that the Jacobian of the system (4.3) has the form

J =

[
1 − b + dy dx

−(c + d)y 1 − a + c − (c + d)x − 2cy

]
. (4.4)

The Jacobian at the fixed point λ0 = (0, 0) has the form

J(λ0) =

[
1 − b 0

0 1 − a + c

]
.

Clearly, if b = 0 or a = c then the eigenvalues µ1 or µ2 of the matrix J(λ0) are
equal to one, i.e. λ0 is nonhyperbolic and in all other cases λ0 is hyperbolic.

If b > 0, a �= c then one eigenvalue µ1 = 1 − b < 1 is correct for all b. If a > c

and a < c then |µ2| < 1 and |µ2| > 1, respectively. Hence, λ0 is an attracting and
saddle point when a > c and a < c, respectively, repelling case does not occur.

(2) At the point λ1 the Jacobian is

J(λ1) =



1 − b +

(c − a)d
c

0

− (c + d)(c − a)
c

1 + a − c


.

It is easy to see that if a = c or b = d(1 − a
c ) then at least one eigenvalue of the

matrix J(λ1) is equal to one, so λ1 is nonhyperbolic.
If a �= c then by the condition c ≥ a one eigenvalue µ1 = 1− c + a is always less

than one. Moreover, if b > d(1 − a
c ) then λ1 is an attractive, and if b < d(1 − a

c )
then λ1 is a saddle point. Here, also repelling case does not exist.
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(3) Next, we consider the Jacobian at the fixed point λ2

J(λ2) =




1
cd − ad − bc

c + d

− (c + d)b
d

d − bc

d


.

◦ If b = 0 or cd − ad − bc = 0 then λ2 is nonhyperbolic.
◦ If c = 0 then a = 0 and λ2 = (0, b

d ) is nonhyperbolic again.
◦ If b = d then by the condition cd − ad − bc ≥ 0 we have a = 0, it means λ2 is

nonhyperbolic.
◦ If 0 < c ≤ a then by the condition cd− ad− bc ≥ 0 we have c = a and b = 0 and

λ2 is nonhyperbolic again.
◦ If d > b > 0, c > a, c > 0 then the eigenvalues of the matrix J(λ2) are

µ1,2 =
2d − bc ±√

D

2d
,

where

D = b(bc2 − 4d(cd − ad − bc)).

We study this eigenvalues:
If b ≥ 4d2(c−a)

c(c+4d) then

D = b2c2 − 4bd(cd − ad − bc) ≥ 0

and since D < b2c2 we have µ1,2 < 1. Furthermore, we have to check the condition
µ1,2 > −1.

If d > bc(b+2)
4+bc−ab then λ2 is a attractive fixed point.

If d < bc(b+2)
4+bc−ab then λ2 is a saddle fixed point.

If d = bc(b+2)
4+bc−ab then λ2 is nonhyperbolic fixed point.

But by the conditions (2.5)

bc(b + 2)
4 + bc − ab

− d =
b2c + 2bc− 4d − bcd + abd

4 + bc − ab
<

d2c + 2dc − 4d − bcd + cbd

4 + bc − ab

=
d(cd + 2c − 4)

4 + bc − ab
<

d((1 + a)(1 − a) + 2(1 + a) − 4)
4 + bc − ab

= − d(a − 1)2

4 + bc − ab
< 0.

It follows that

d >
bc(b + 2)

4 + bc − ab
.

If b < 4d2(c−a)
c(c+4d) then D < 0 and we obtain the complex eigenvalues.
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If a < c(2d2−b2c)
2d2 then |µ1| = |µ2| =

√
(2d−bc)2+D

2d < 1 and λ2 is attracting fixed
point.

If a > c(2d2−b2c)
2d2 then |µ1| = |µ2| > 1 and λ2 is repelling fixed point.

If a = c(2d2−b2c)
2d2 then |µ1| = |µ2| = 1 and λ2 is nonhyperbolic fixed point. By the

conditions to the parameters again, we have

c(2d2 − b2c)
2d2

− a =
2cd2 − b2c2 − 2ad2

2d2
=

2cd2 − 2ad2 − 2bcd + 2bcd − b2c2

2d2

=
2d(cd − ad − bc) + bc(2d − bc)

2d2

>
2d(cd − ad − bc) + bc(2b − bc)

2d2
> 0

(since cd − ad − bc > 0, c ≤ 2). It follows that

a <
c(2d2 − b2c)

2d2
.

Consequently, for cd − ad − bc > 0, c > a, c > 0, d > b > 0 the fixed point λ2 is
attracting.

4.2. The limit points

We consider the operator (4.3) with initial point λ(0) = (x(0), y(0)) and will study
when some of fixed points λ0, λ1 and λ2 is a limit point.

If x(0) = y(0) = 0 then the limit point is λ0.
The invariant sets with respect to W , (4.3), are

M1 = {λ = (x, y) : x = 0}, M2 = {λ = (x, y) : y = 0},
i.e. W (Mi) ⊂ Mi, i = 1, 2.

Consider restriction of the operator (4.3) on invariant sets:

Case M1. In this case the restriction is

y(1) = y(1 − a + c − cy) = ϕ(y), y ∈ [0, 1].

Note that ϕ(y) has a unique fixed point y = 0 if a > c and two fixed points y = 0,
y = 1 − a

c if c ≥ a. Since ϕ′(0) = 1 − a + c the fixed point 0 is attracting iff c < a,
nonhyperbolic if c = a and repelling if c > a. Similarly, by ϕ′(1 − a

c ) = 1 + a − c

we have that 1 − a
c is attracting if c > a and nonhyperbolic if c = a. Moreover, for

a ≥ c the sequence y(n) = ϕn(y(0)) is a decreasing. Thus for any y(0) ∈ [0, 1], we
have

lim
n→∞ y(n) =




0, if a ≥ c,

1 − a

c
, if a < c.

1950015-16



February 27, 2019 15:3 WSPC S1793-5245 242-IJB 1950015

Ocean ecosystem discrete time dynamics generated by �-Volterra operators

Case M2. In this case the restriction is

x(1) = (1 − b)x, x ∈ [0, 1].

It is easy to see that

lim
n→∞x(n) = lim

n→∞(1 − b)nx =

{
0, if b > 0, or x = 0,

x, if b = 0.

Thus behavior of trajectories are clear if the initial point is taken on invariant
sets Mi, i = 1, 2.

We assume now that x(0) �= 0, y(0) �= 0.

Case 1. If c < a then λ1 and λ2 do not belong to the simplex (because they have
negative coordinates), so λ0 is a unique attracting fixed point. We show that the
fixed point is globally attracting, i.e. ∀λ(0) ∈ S2 one has

lim
n→∞λ(n) = λ̄0.

It is easy to see that

z(1) = z(0)(1 − cy(0)) + ay(0) + bx(0) = z(0) − y(0)(cz(0) − a) + bx(0)

≥ z(0) − y(0)(cz(0) − a) ≥ z(0) (since cz(0) − a ≤ 0).

Consequently, the sequence z(n) is increasing and bounded, i.e. it has a limit:

lim
n→∞ z(n) = z̄ ≥ 0,

Next, we consider two cases:
1.1. If d < 0 then x(1) = x(0)(1− b + dy(0)) ≤ x(0)(1− b) ≤ x(0), by iterating we

get that x(n+1) ≤ x(n), ∀n ∈ N and there exists the limit

lim
n→∞x(n) = x̄.

By x(n) + y(n) + z(n) = 1 it follows that there exists the limit of sequence y(n),

lim
n→∞ y(n) = ȳ.

1.2. If d ≥ 0 then

y(1) = y(0)(1 − a − dx(0) + cz(0)) ≤ y(0)(1 − a − dx(0) + c) ≤ y(0)(1 − dx(0)) ≤ y(0)

and similarly, in this case there exist limits of sequences x(n), y(n), i.e.

lim
n→∞λ(n) = λ̄ = (x̄, ȳ, z̄).

Since a limit point must be a fixed point and in this case we have a unique fixed
point on the simplex, we get

lim
n→∞ λ(n) = λ̄0 = (0, 0, 1).

Thus, λ0 is a globally attracting fixed point.
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Case 2. If c > a, d < b then x(1) = x(0)(1 − b + dy(0)) ≤ x(0)(1 − b + d) < x(0) and
we check the monotonicity of the sequence y(n). In this case, the following lemma
is useful.

Lemma 2. If c > a, d < b for the operator (1.7), we have

(a) If c + d ≥ 0 then the set E = {(x, y, z) : z ≥ a+dx
c } is an invariant.

(b) If c + d < 0 then the set F = {(x, y, z) : z < a+dx
c } is an invariant.

Proof. (a) For any point (x, y, z) ∈ E , we have

z ≥ a + dx

c
⇔ 1 − x − y ≥ a + dx

c
⇔ cy ≤ c − a − (c + d)x.

Then 1 − cy ≥ 1 − (c − a − (c + d)x) > 0. Next, we show that z(1) ≥ a+dx(1)

c , i.e.

z(1 − cy) + ay + bx ≥ a + dx(1 − b + dy)
c

which is equivalent to

z ≥ a + dx − bdx + d2xy − acy − bcx

c(1 − cy)

⇔ a + dx

c
≥ a + dx − bdx + d2xy − acy − bcx

c(1 − cy)

⇔ (c + d)(b − dy) ≥ 0

the last inequality is true, since b − dy > 0, c + d ≥ 0. Hence, z(1) ≥ a+dx(1)

c ;

(b) If (x, y, z) ∈ F then z < a+dx
c and we have to show that z(1) < a+dx(1)

c , i.e.

z(1 − cy) <
a + dx − bdx + d2xy − acy − bcx

c

(i) If 1 − cy > 0 then

z <
a + dx − bdx + d2xy − acy − bcx

c(1 − cy)

⇔ a + dx

c
<

a + dx − bdx + d2xy − acy − bcx

c(1 − cy)

from this we have the inequality (c + d)(b − dy) < 0 which is true;
(ii) If 1 − cy < 0 then

z >
a + dx − bdx + d2xy − acy − bcx

c(1 − cy)

⇔ a + dx

c
>

a + dx − bdx + d2xy − acy − bcx

c(1 − cy)

⇔ dy(c + d) − b(c + d)
(1 − cy)

< 0.
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Hence, we have again correct inequality (c + d)(dy − b) > 0 (since c + d <

0, dy − b < 0). Thus, z(1) < a+dx(1)

c .

Now, we continue the proof of monotonicity of the sequence y(n). Using by
Lemma 2, we have that if an initial point λ0 = (x0, y0, z0) taken from the set E and
c + d ≥ 0 then the sequence y(n) is increasing (since y(n+1) = y(n)(1 − a − dx(n) +
cz(n)) ≥ y(n), ∀n ∈ N), it has the limit and we obtain

lim
n→∞λ(n) = λ̄1,

because λ1 is the unique attracting fixed point in E .
If λ(0) /∈ E then we consider two cases:

(i) If λ(n) /∈ E , ∀n ∈ N then y(n) is decreasing (since y(n+1) < y(n)(1 − a − dx +
cz(n)) < y(n), ∀n ∈ N);

(ii) If λ(k) ∈ E , for some k ∈ N then y(n) is increasing for n > k.

Similarly, if an initial point λ(0) = (x(0), y(0), z(0)) taken from the set F and
c + d < 0 then the sequence y(n) is decreasing and for the case λ(n) /∈ F the
sequence y(n) has limit point again. Consequently, if y(0) = 0 then

lim
n→∞λ(n) = λ0.

Thus, λ0 is a saddle fixed point and λ1 is globally attracting fixed point.

Case 3. c > a, d > b > 0. In this case, numerical analysis show that the coordinates
of the vector λ(n) are not monotone, so it is not easy to see the limit properties of
the trajectory. Therefore, we study these limits numerically for concrete values of
parameters.

3.1. a = 1/4, b = 1/2, c = 1, d = 3/4. Then by the system (4.3), we get{
x′ = 0.5x + 0.75xy,

y′ = 1.75y − 1.75xy − y2.
(4.5)

For this system λ2 = ( 1
21 ; 2

3 ; 2
7 ) ≈ (0.0476; 0.6667; 0.2857). Next, we divide the

simplex to the four parts as following Fig. 1.
By using Wolfram Mathematica 7.0, we find limit points of initial points from

S1, S2, S3 and S4, respectively Fig. 2.

(i) If (x(0), y(0)) = (0.1, 0.6) ∈ S1 then after 100 iterations we get

(x(100), y(100)) = (0.0476346, 0.666636).

(ii) If (x(0), y(0)) = (0.02, 0.68) ∈ S2 then

(x(100), y(100)) = (0.0475566, 0.666789).

(iii) If (x(0), y(0)) = (0.05, 0.68) ∈ S3 then

(x(100), y(100)) = (0.0476215, 0.666662).
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Fig. 1. The simplex divided to the four parts.

Fig. 2. (Color online) Blue: (0.1, 0.6) ∈ S1; black: (0.02, 0.68) ∈ S2; green: (0.05, 0.68) ∈ S3; red:
(0.07, 0.66) ∈ S4.

(iv) If (x(0), y(0)) = (0.07, 0.66) ∈ S4 then

(x(100), y(100)) = (0.0476302, 0.666645).

3.2. a = 1/6, b = 1/3, c = 4/3, d = 2/3. Then by the system (4.3), we have


x′ =
2
3
x +

2
3
xy,

y′ =
13
6

y − 2xy − 4
3
y2.

(4.6)

For this system λ2 = (0.25; 0.5; 0.25) and we have Fig. 3

(i) If (0.26, 0.48) ∈ S1 then

(x(100), y(100)) = (0.25, 0.5).
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Fig. 3. (Color online) Blue: (0.26, 0.48) ∈ S1; black: (0.22, 0.52) ∈ S2; green: (0.24, 0.52) ∈ S3;
red: (0.29, 0.48) ∈ S4.

(ii) If (0.22, 0.52) ∈ S2 then

(x(100), y(100)) = (0.25, 0.5).

(iii) If (0.24, 0.52) ∈ S3 then

(x(100), y(100)) = (0.25, 0.5).

(iv) If (0.29, 0.48) ∈ S4 then

(x(100), y(100)) = (0.25, 0.5).

To sum up for the initial point λ(0) = (x(0), y(0), z(0)) ∈ intS2, we have

lim
n→∞λ(n) = λ̄2.

We get phase portraits of the trajectories of (1.7) shown in Figs. 4–6. Summa-
rizing we obtain the following theorem.

Theorem 2. Let cd(c+d) �= 0 and λ(0) = (x(0), y(0), z(0)) be an initial point. Then
the following three cases hold :

(1) If c < a then

lim
n→∞λ(n) = λ̄0 = (0, 0, 1).

(2) If c > a, d < b then

lim
n→∞λ(n) =




(x(0), 0, 1 − x(0)), if y(0) = 0, b = 0,

λ̄0, if y(0) = 0, b �= 0,

λ̄1, if y(0) > 0.

(4.7)
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Fig. 4. If c < a.

Fig. 5. If c > a, d < b.

Fig. 6. If c > a, d > b.
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(3) If c > a, d > b > 0 then

lim
n→∞λ(n) =




λ̄2 =
(

cd − ad − bc

d(c + d)
,
b

d
,
a − b + d

c + d

)
, if x(0) �= 0, y(0) �= 0,

λ̄0, if y(0) = 0,

λ̄1, if x(0) = 0.

(4.8)

Remark 4. We were able to prove the first line of the formula (4.8) only for
a small neighborhood of λ̄2, because this fixed point is an attracting point (see
Proposition 2).

Remark 5. To give mathematically full analysis of the operator (1.7), we consid-
ered the cases cd(c + d) = 0 and cd(c + d) �= 0. But if cd(c + d) = 0 then some our
results (when y(n) has zero limit) have not a biological meaning. Below, we give
biological interpretation of all remaining cases.

5. Biological Interpretations

The dynamical systems considered in this paper are interesting because they are
higher-dimensional and such dynamical systems are important, but there are rela-
tively few dynamical phenomena that are currently understood [3, 5].

In [2] for the continuous-time case the steady (stable) states of the system of
Eq. (1.1) are found. Usually in models of ecosystems species at alternate levels in
the food chain benefit from an increase in nutrient supply. It is known that if the
supply of the nutrient which limits phytoplankton growth is increased, it is not the
phytoplankton but the predatory zooplankton that benefit.

The results formulated in previous sections have the following biological inter-
pretations:

Let λ(0) = (x(0), y(0), z(0)) ∈ S2 be an initial state, i.e. λ(0) is the probability
distribution on the set {N, P, Z} of ecosystem.

Assume the trajectory λ(m) of this point has a limit λ∗ = (x∗, y∗, z∗) (equilib-
rium state) this means that the future of the system is stable: each N, P, Z survives
with probability x∗, y∗, z∗ respectively. For example, the nitrogen, N , of the system
will disappear if its probability x∗ is zero.

Each fixed point of the operator (1.7) is an equilibrium state and Theorem 1
gives that system may have a continuum set (but in under conditions of Theorem 2
it has up to three) of equilibrium states, the system stays in a neighborhood of one
of the equilibrium states (stable fixed point), which depends on the initial state.

Moreover, as in continuous time [2] and in discrete time (Theorems 1 and 2)
for c < a, the only steady state is the trivial one λ̄0 = (0, 0, 1). Plankton levels are
very low. As c increases past a, λ̄0 loses its stability as an eigenvalue passes through
zero, and λ̄1 becomes stable. When c increases still further, there is a second critical
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value at b < d(1 − a
c ) (Proposition 2), where λ̄1 loses its stability as an eigenvalue

passes through zero, and λ̄2 becomes stable.
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