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Abstract—An analysis of existing methods for solving the
problems of risk assessment showed that they are based on
the lack of computational capabilities and the lack of necessary
information about the conditions of the problem. Therefore, in
such cases it is advisable to use fuzzy mathematical methods. In
this paper, we consider approaches to solving the problem of risk
assessment with fuzzy source information.

Index Terms—uncertainty, risk, fuzzy logic, incorrect tasks,
soil fertility.

I. INTRODUCTION

For complex processes characterized by uncertainty (in-
accuracy, non-stochasticity, incompleteness, fuzziness) in the
initial information and situations of the external and internal
environment, it is usually not possible to construct simple
adequate mathematical models. Information about the param-
eters of such processes is expressed by experts in the form of
words and sentences, i.e. in a linguistic form. In such cases, it
is advisable to apply modeling, decision-making and control
systems using Soft Computing technology [1], [2].

With increasing complexity of the system, there arises a
difficulty associated with determining the correct set of rules
and membership functions for an adequate description of the
behavior of the system. Fuzzy systems suffer from deficiencies
in extracting additional knowledge from the results of the
experiment and adjusting fuzzy rules to improve the quality
of the system’s operation. When evaluating alternative options
for making decisions on risk assessment in conditions of
uncertainty, there arises the problem of developing fuzzy
models based on fuzzy rules of inference. But there is no

universal method for constructing fuzzy evaluation models.
The advantage of fuzzy logic lies in the possibility of using
expert knowledge about this object in the form of if ”inputs”,
then ”exits”. In the process of developing a fuzzy model
of risk assessment based on the conclusions of fuzzy rules,
researchers often face the problem of finding approximate
solutions to ill-posed problems. It should be noted that meth-
ods designed to solve the incorrect tasks of decision support
systems have been developed only for a number of particular
cases of models (for example, for models based on classical
logic). At the same time, there is no general approach to
solving fuzzy logic problems for arbitrary fuzzy systems [6],
[10].

Therefore, the analysis of risk assessment tasks in fuzzy
conditions, as well as modeling and algorithmic support for
solving ill-posed problems formalized in the process of this
analysis, are relevant for modern decision support systems.

The problems of decision-making in the risk assessment,
which led to the emergence of natural, man-made and envi-
ronmental disasters, are discussed in the works of V.I.Norkin
and Yu.M.Ermoliev [3], V.S.Mikhalevich and P.S.Knopov,
I.V.Sergienko and V.M.Yanenko [4]. The formation of risk
in the economic plan was considered in the works of
A.O.Nedosekin [5]. The management problems associated
with risk prevention measures are discussed in the work of
Yu.M.Ermoliev [3].

In work [7] results of use of systems of fuzzy logic
conclusion are resulted. It deals with the basic algorithms
of the fuzzy derivation of Mamdani, Tsukimoto, Sugeno
and Larsen. Basically, the object of forecasting was chosen
macroeconomics and financial sphere. The forecast error is



6.67
In work [8] results of researches on forecasting of a flow

of tourists to Turkey are resulted which are received with the
help of fuzzy regression model and model ARIMA. The model
showed its stability in the process of forecasting the flow of
tourists in Turkey at different times.

The paper [9] is devoted to predicting the water level on
the rivers in Italy. In the forecasting process, models based on
artificial neural networks and the fuzzy logical approach of
Mamdani and Takagi-Sugeno were used. The input data is the
water level and the ratio of the time period in which there is a
period of increasing water flow and precipitation. The results
of the studies showed the reliability of the neuro-fuzzy model.

II. A MODEL OF THE RISK OF REDUCING SOIL FERTILITY

Let a sample of fuzzy experimental data be given(Xr, yr),
r = 1,M ; here Xr = (xr,1, xr,2, ..., xr,n)- the input n-
dimensional vector and yr - the corresponding output vector.

Based on fuzzy inference rules, it is required to build a
model of the risk of reducing soil fertility in the following
form:

If (z = a111 ∨ z1 = a112 ∨ z2 = a113 ∨ z3 = a114)∧ . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . .
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If (x1 = a121 ∨ x2 = a122 ∨ x3 = a123 ∨ ... ∨ x8 = a128)∧
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(x1 = am2
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If (x11 = a131∨x12 = a132∨x13 = a133∨...∨x17 = a137∨z =
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If (x21 = a141 ∨ x22 = a142 ∨ x23 = a143 ∨ ... ∨ x27 = a147)∧
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(x21 = am4
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In general, it is required to build a model based on fuzzy
inference rules:

kj⋃
p=1

(
n⋂
i=1

xi = ai,jp − withweight wjp

)
→ yj = bm0

+

bm1
xj1 + ...+ bmnx

j
n.

III. APPROXIMATE SOLUTION OF INCORRECT PROBLEMS

In the process of constructing the model, it is necessary to
find such values of the coefficients of the rules B = (bij), i =
1, n, j = 1,m, over which the minimum of the following
expression is reached:∑

r=1,M

(
yr − yfr

)
→ min (1)

where - yfr - (Xr) is the result of fuzzy inference rules with
parameter B in the r-th row of the selection. The input vector
Xr = (xr,1, xr,2, ..., xr,n) corresponds to the following result
of fuzzy inference:

yfr =

∑
j=1,m

µdj (Xr) · dj∑
j=1,m

µdj (Xr)
oryfr =

∫
µdj (Xr) · djddj∫
µdj (Xr)ddj

; (2)

here dj = bj0+bj1x11+bj2x12+......+bjnx1n is the output
of the j-rule; - µdj (xr) the membership function corresponding
to each experimental information:

µdj (Xr) = µj1(xr1) · µj1(xr2) · µj1(xr3) · ....... · µj1(xrn)∨
∨ µj2(xr1) · µj2(xr2) · µj2(xr3) · ....... · µj2(xrn)∨
.......................................................................

∨ µjm(xr1) · µjm(xr2) · µjm(xr3) · ....... · µjm(xrn);

βjr =
µdj (Xr)·dj∑

j=1,m

µdj (Xr)
or βjr =

µdj (Xr)·dj∫
µdj (Xr)∂d

.

Then [2] can be rewritten in the following form:



yfr =
∑

j=1,m

βr,j · dj =
∑

j=1,m

(βr,j · bj,0 + βr,j · bj,1 · xr,1+

+βr,j · bj,2 · xr,2 + ...+ βr,j · bj,n · xr,n)

We introduce the following notation:

Y f =
(
yf1 , y

f
2 , ..., y

f
M

)T
;

Y = (y1, y2, ..., yM )
T ;

A =

 β1,1, ..., β1,m, x1,1 · β1,1, ..., x1,n · β1,1, ..., x1,t · β1,m
...

βM,1, ..., βM,m, .., xM,n · βM,1, ..., xM,t · βM,m


Then we rewrite [1] in the following matrix form: find a

vector B such that condition

E = (Y − Y f )T · (Y − Y f )→ min (3)

The solution of problem [3] corresponds to the solution of
the following equation:

Y = A ·B (4)

In the process of developing fuzzy risk assessment models
based on fuzzy inference rules, in cases where the problem
[4] does not satisfy the correctness condition, often face
the problem of finding an approximate solution to ill-posed
problems.

The results of the subsequent mathematical analysis depend
to a large extent on how adequately the initial information
about the subject of the study is used in modeling, i.e. what is
the degree of adequacy of the model. In connection with this,
the main tasks of developing models of weakly formalized
processes are [8]:

- Analysis of compact and noncompact classes of cor-
rectness. Indication of the possibility of obtaining fuzzy and
fuzzy-stable solutions to ill-posed problems formalized in the
process of constructing a risk assessment model using different
membership functions;

- development of algorithms for solving unstable problems
formalized in the process of constructing a model for estimat-
ing and predicting risk based on fuzzy sets.

The fuzzy solution of equations Az = u is the primary
information, expressed with the help of a fuzzy set

⋃
α
αAα

and having the following properties:
* given the operator A and the initial data z;
* ∀α ∈ (0, 1] , Aα = {z : µA (z) ≥ α};
∃ε (α) > 0, sup

z∈Aα
ρz (A(z), Aα) < ε (α) < ∞. where z is

the interval between the sets A(z) and A.
The search for solutions of equation
Az = u is reduced to the problem of finding a fuzzy solution

of this equation.
Suppose that in the linear regression model y = a0+a1x1+

a2x2 + .... + anxn- i - the estimation coefficients ai and the
input data i are given in a fuzzy form

We find the parameters of the model whose membership
function is given in a Gaussian form. Let be the ai- Gaussian
fuzzy number in the linear fuzzy regression model given with
the parameter (ãi, ci). Here ãi is the center of the fuzzy
number, ci- the latitude of the interval, ci > 0.

Suppose that xi- the input data, which are Gaussian fuzzy
numbers. Let the membership functions of the input data be
given in the following form:

µ(x) =

 e
− 1

2
(x−ã)2

c21 , x ≤ a,

e
− 1

2
(x−ã)2

c22 , x > a.

Then such fuzzy numbers are defined with three parameters:
(c1, ã, c2); here ãi is the center of the fuzzy number; c1-
latitude of the left interval; c2- the latitude of the right interval.

In this case, the problem is formed as follows: find pa-
rameters (ãi, ci) of the coefficients i such that the following
conditions are satisfied:

a) let yk in the equation correspond to the found interval
with a degree not lower than , 0 < α < 1;

b) the latitude of the interval with degree is minimal.
The interval of the estimate with degree is the following:
dα = y2 − y1. 1 and 2 can be found from the system α = exp

(
− 1

2
(y2−ã)2

c22

)
,

α = exp
(
− 1

2
(y1−ã)2

c21

)
.

Hence y2 = c2
√
−2 lnα + ã, y1 = c1

√
−2 lnα + ã, dα =

−2 lnα(c2 + c1).
Condition a) is written in the form

µ(yk) ≥ α⇒

{
yk ≤ ãk + c2k

√
−2 lnα,

yk ≥ ãk − c1k
√
−2 lnα.

The problem takes the following form:

min
m∑
k=1

dkα = min
m∑
k=1

(c2k + c1k)
√
−2 lnα,{

yk ≤ ãk + c2k
√
−2 lnα,

yk ≥ ãk − c1k
√
−2 lnα.

To find the model parameters, the membership function
of which is bell-shaped, it is required to solve the following
linear programming problem:

m∑
k=1

(c1k + c2k)
√

1−α
α → min,

yk ≤ ãk + c2k

√
1−α
α ,

yk ≥ ãk + c1k

√
1−α
α .

After finding the parameters ãk, c1k, c2k, the type of the
specified fuzzy model is determined.

The problem of optimization of weakly formalizable pro-
cesses is solved on the basis of a fuzzy-multiple approach.
The solutions of optimization optimization and risk forecasting
problems are obtained and analyzed.



The task of forecasting the risk of reducing soil fertility is
solved on the basis of an unclear approach.

The fertility of the soil is characterized by such generally
accepted components of fertility as the moisture reserve, the
amount of humus, nitrogen, phosphorus.

IV. COMPUTATIONAL EXPERIMENT

On the basis of experimental data, a numerical expression
of the dependence of the risk of reducing the fertility of the
soil on its components:

y =

n∑
i=1

µa0ia0i

n∑
i=1

µa0i

+

n∑
i=1

µa1ia1i

n∑
i=1

µa1i

x1 +

n∑
i=1

µa2ia2i

n∑
i=1

µa2i

x2 + ...

...+

n∑
i=1

µa7ia7i

n∑
i=1

µa7i

x7 +

n∑
i=1

µa8ia8i

n∑
i=1

µa8i

x8 (5)

The parameters of the model are defined as fuzzy subsets,
i.e. they are given through the membership functions of the
corresponding subsets:

ai = (µai , (a
′
i, a
′′
i));

where
µa0 = e25·10

2(x+0.93)2 , a0 ∈ [−0, 95;−0, 91];
µa1 = e25·10

2(x+0.25)2 , a1 ∈ [−0, 27;−0, 23];
µa2 = e25·10

8(x+0.002)2 , a2 ∈ [−0, 0022;−0, 0018];
µa3 = e25·10

8(x−0.004)2 , a3 ∈ [0, 0038; 0, 0042];
µa4 = e25·10

6(x−0.004)2 , a4 ∈ [0, 0028; 0, 0032];
µa5 = e25·10

2(x+0.49)2 , a5 ∈ [−0, 51;−0, 47];
µa6 = e25·10

2(x−0.13)2 , a6 ∈ [0, 11; 0, 15];
µa7 = e25·10

4(x+0.05)2 , a7 ∈ [−0, 052;−0, 048];
µa7 = e25·10

4(x+0.04)2 , a8 ∈ [0, 038; 0, 042].

The mass status of the humus in the soil is a function of the
state of the system in percent; x1- volume of soil, g/sm3; x2-
depth of plowing, sm; x3 - rate of phosphorus input, kg/ha;
x4- rate of potassium intake, kg/ha; x5- nitrogen content in
soil, %; x6- share of organic carbon in soil, %; x7- average
temperature per day, %; x8- soil moisture, %.

According to equation (5), with an increase in the proportion
of organic carbon in the soil composition, soil moisture,
phosphorus and potassium rates, and also the amount of
humus increase by an average of [0.11, 0.15]; [0.038, 0.042];
[0.0038; 0.0042]; [0,028,0,032], respectively. The increase in
the volumetric mass of the soil, the amount of nitrogen in it,
and the depth of plowing per unit reduce the proportion of
humus in the soil composition by an average of [0.23, 0.27];
[0.47, 0.51] and [0.0018; 0.0022], respectively.

The fuzzy approach allows you to rely on any a priori
information and obtain a fuzzy solution for a given level of
accuracy of the source data.

A program has been created to solve this problem and the
final values of the solution of the problem.

The value of the regularization parameter:
2.61934474110603E-0010.

On the basis of the proposed method, an approximating
model for estimating and predicting risk in fuzzy conditions
has been created with the verification of the solution for
stability without consideration (Fig.1.2). The forecast error for
the first model was 0.05-3.5 %, and for the second model it
was 5.5-50.33 %.

 

Fig. 1. The program for solving the task of risk assessment without checking
for stability

 

Fig. 2. The program for solving the problem of risk assessment with a test
of sustainability

An algorithm for solving the problem of parametric pro-
gramming based on fuzzy current information is developed.

To solve the problems of estimation, forecasting of risk
and decision-making in weakly formalized systems, a program
was created in the DELPHI-7 environment (Figure 3) and the
results of solving the multicriterial optimization problem.

 

Fig. 3. Program for solving multicriterial optimization problems



V. CONCLUSION

The approach based on the expert definition of models
of non-linear optimization problems in the form of fuzzy
values allows the decision-maker to understand the meaning
of the objective function and the constraints (semantics) of the
optimization problem for weakly formalizable processes.

It is shown that the solution of the problem of optimization
of weakly formalized processes on the basis of the fuzzy-
multiple approach makes it possible to obtain optimal solutions
for the problems of risk assessment and forecasting. De-
scriptions of objective functions and constraints of nonlinear
optimization problems in the form of fuzzy expressions allow
us to describe the problem in the form of ”soft” models and
obtain effective solutions.
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