Vol.22(№1)

2020

PP.16-19

ТЕОРЕТИЧЕСКОЕ ИССЛЕДОВАНИЕ СПИН-ЗАВИСИМОГО РАЗМЕРНОГО КВАНТОВАНИЯ В ДВУХБАРЬЕРНОЙ ПОЛУПРОВОДНИКОВОЙ СТРУКТУРЕ

В.Р. Расулов, Р.Я. Расулов, Р.Р. Султонов, Б.Б. Ахмедов

Ферганский государственный университет, Фергана, Узбекистан (Получена 24.06.2019)

Икки тўсикли яримўтказгичли структурада ток ташувчиларнинг спин боғланган ўлчамли квантланиши назарий тадқиқ қилинган. Бу холда спин-орбитал кенгайиш ток ташувчилар эффектив гамильтонианида Дрессельхауз улушини эътиборга олган холда қайд қилинган.

Теоретически исследовано спин-зависимое размерное квантование энергетического спектра носителей тока через двухбарьерную полупроводниковую структуру. При этом спинорбитальное расщепление учитывается введением в эффективный гамильтониан слагаемого Дрессельхауза.

The spin-dependent size quantization of the energy spectrum of current carriers through a two-barrier semiconductor structure is theoretically researched. In this case, the spin-orbital splitting is taken into account by introducing the Dresselhaus term into the effective hamiltonian.

В связи с ростом интереса к спин-зависимым явлениям большое внимание вызывает проблема кинетики спин-поляризованных электронов в полупроводниках различной симметрии с целью создания спиновых детекторов. Впервые на возможность создания спинового фильтра на основе туннелирования через асимметричный барьер в полупроводниках указано в [1, 2], где влияние спина на движение учтено введением в эффективный гамильтониан носителей тока слагаемого Рашбы [3]. Возможность получать поляризацию носителей в гетероструктуре, где асимметрия создается за счет легирования, была проанализирована в работе [4]. Теоретическая модель спинового инжектора на основе симметричного барьера, где учтено дрессельхаузовское спин-орбитальное взаимодействие, была построена в [5].

В настоящей работе теоретически рассмотрено размерное квантование энергетического спектра спин-поляризованных электронов в квантовой яме пьезоэлектрического полупроводника. Предполагаем, что структура выращена так, что нормаль к интерфейсам структуры направлена вдоль одной из главных кристаллографических осей. Например, $Al_{1-x}Ga_xSb$ структуры обладают решеткой типа цинковой обманки и не имеют центра симметрии. Поэтому допускают в эффективном гамильтониане электронов кубические по волновому вектору слагаемые. Для определенности считаем, что оси *x*, *y* и *z* направлены вдоль кристаллографических осей [100], [010] и [001] соответственно. Пусть $k_{\perp}(k_z)$ – волновой вектор электронов, перпендикулярен (параллелен) оси *z*, вдоль которой может происходить туннелирование. В отсутствие внешнего воздействия состояния электронов могут быть описаны гамильтонианом:

$$\hat{H}_{l} = -\frac{\hbar^{2}}{2m_{l}^{(*)}} \frac{\partial^{2}}{\partial x^{2}} + \frac{\hbar^{2}k_{\perp}^{2}}{2m_{l}^{(*)}} \frac{\partial^{2}}{\partial x^{2}} + V_{l}(x) + \hat{H}_{l}^{(D)}.$$
(1)

Здесь $m_l^{(*)}$ – эффективная масса электрона, $V_l(x)$ – потенциал, который зависит от номера слоя *l* структуры, где энергия электрона отсчитывается от дна зоны проводимости в эмиттере [6].

В пьезоэлектрических полупроводниках типа GaAs спин-орбитальное взаимодействие электрона с полем решетки приводит к появлению кубического по волновому вектору слагаемого Дрессельхауза $\hat{H}_{l}^{(D)}$ [7]:

$$\widehat{H}_{l}^{(D)} = \gamma_{l} \sum_{\alpha \neq \beta \neq \eta = x, y, z} \sigma_{\alpha} k_{\alpha} \left(k_{\beta}^{2} - k_{\eta}^{2} \right),$$
⁽²⁾

где γ_l – постоянная константа Дрессельхауза в *l*-ом слое гетероструктуры, σ_{α} ($\alpha = x, y, z$) – матрицы Паули. Например, для Al_{0.3}Ga_{0.7}Sb γ_l принимает значения 121.26×10⁻⁴⁹ J·m³ [8], для GaSb – 299.2×10⁻⁴⁹ J·m³, для GaAs – 38.4×10⁻⁴⁹ J·m³ [5]. Мы будем изучать размерное квантование энергетического спектра электронов с кинетическими энергиями, существенно меньшими глубины ямы и высоты барьера, что позволяет оставить в гамильтониане только линейные по волновым векторам k_x , k_y члены и записать слагаемые Дрессельхауза в (1) в виде:

$$\begin{aligned} \hat{H}_{l}^{(1D)} &= \gamma_{l} \left(\sigma_{y} k_{y} - \sigma_{z} k_{z} \right) \frac{\partial^{2}}{\partial x^{2}}, \\ \hat{H}_{l}^{(2D)} &= \gamma_{l} \left(\sigma_{z} k_{z} - \sigma_{x} k_{x} \right) \frac{\partial^{2}}{\partial y^{2}}, \\ \hat{H}_{l}^{(3D)} &= \gamma_{l} \left(\sigma_{x} k_{x} - \sigma_{y} k_{y} \right) \frac{\partial^{2}}{\partial z^{2}}, \end{aligned}$$
(3)

Итак, гамильтониан для электронов в слое с номером *l*, с помощью которого можно анализировать размерное квантование и туннелирование, запишем в виде:

$$\hat{H}_{l}^{(\zeta)} = -\frac{\hbar^{2}}{2m_{l}^{*}} \frac{\partial^{2}}{\partial x_{\zeta}^{2}} + \frac{\hbar^{2} \left(\vec{k}_{\perp}^{(\zeta)}\right)^{2}}{2m_{l}^{*}} \frac{\partial^{2}}{\partial \zeta} + V_{l}(x_{\zeta}) + \hat{H}_{l}^{(\zeta D)}, \tag{4}$$

где $\zeta = 1, 2, 3$ соответствуют интерфейсам *yz*, *xz*, и *xy* соответственно, $\left(\vec{k}_{\perp}^{(1)}\right)^2 = k_z^2 + k_y^2$, $\left(\vec{k}_{\perp}^{(2)}\right)^2 = k_x^2 + k_z^2$, $\left(\vec{k}_{\perp}^{(3)}\right)^2 = k_x^2 + k_y^2$, $x_1 = x, x_2 = y, x_3 = z$.

Волновую функцию электрона с волновым вектором $k_{\perp}^{(\zeta)}$, следуя [7], будем искать в виде:

$$\psi_l^{(\zeta\pm)} = \chi_l^{(\pm)} u_l^{(\zeta\pm)}(x) \exp(i\vec{r}_\perp \vec{k}_\perp^{(\zeta)}) , \qquad (5)$$

спинор $\chi^{(\pm)}$ выбирается так, чтобы он диагонализировал гамильтониан Дрессельхауза $\hat{H}_{l}^{(1D)}$ в (3):

$$\chi_l^{(\pm)} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\ \mp e^{-i\varphi} \end{pmatrix},\tag{6}$$

17

где φ – полярный угол составляющих вектора $\vec{k}_{\perp}^{(\zeta)}$, описывающих движение электрона в рассматриваемой плоскости интерфейса структуры

Тогда гамильтониан Дрессельхауза принимает вид

$$\hat{H}_{l}^{(\zeta D)} = -\gamma_{l} k_{\perp}^{(\zeta)} \sigma_{x_{\zeta}} \frac{\partial^{2}}{\partial x_{\zeta}^{2}}, \qquad (7)$$

уравнение Шредингера для составляющих волновой функции $u^{(\pm)}(z)$ имеет вид $\hat{H}_{l}^{(\zeta)}u_{l}^{(\zeta\pm)}(x_{\zeta}) = E_{l}^{(\zeta\pm)}u_{l}^{(\zeta\pm)}(x_{\zeta})$ или

$$\left[-\frac{\hbar^2}{2m_l^{(\zeta)}}\frac{\partial^2}{\partial x_{\zeta}^2} + V_l(x_{\zeta})\right]u_l^{(\zeta\pm)}(x_{\zeta}) = E_l^{(\zeta)}u_l^{(\zeta\pm)}(x_{\zeta}).$$
(8)

Здесь
$$m_l^{(\zeta)} = m_l^{(*)} \left(1 + \frac{2\gamma_l m_l^{(*)} k_{\perp}^{(\zeta)}}{\hbar^2} \right)^{-1}$$
 и зависит от $k_{\perp}^{(\zeta)}$

Далее решим уравнения (8), где считаем, что потенциал в каждом слое постоянный, т.е. $V_l(z) = V_l$. Тогда решение уравнения (8) ищем в виде

$$u_l^{(\zeta\pm)}(x_{\zeta}) = A_l^{(\zeta\pm)} e^{i\kappa_l^{(\zeta)}x_{\zeta}} + B_1^{(\zeta\pm)} e^{-i\kappa_l^{(\zeta)}x_{\zeta}}, \qquad (9)$$

или

$$u_l^{(\zeta\pm)}(x_{\zeta}) = C_l^{(\zeta\pm)} \cos\left(\kappa_l^{(\zeta)} x_{\zeta}\right) + D_l^{(\zeta\pm)} \sin\left(\kappa_l^{(\zeta)} x_{\zeta}\right), \tag{10}$$

где $\kappa_l^{(\zeta)} = \sqrt{\frac{2m_l^{(\zeta)}}{\hbar^2}} \left(V_l - E_l^{(\zeta)} \right)$, величины $A_l^{(\zeta\pm)}$, $B_l^{(\zeta\pm)}$ или $C_l^{(\zeta\pm)}$, $D_l^{(\zeta\pm)}$ определяются из граничных условий задачи. Например, из условия

 $u_l^{(\zeta\pm)}(x_{\zeta}=0)=0$ имеем $C_l^{(\zeta\pm)}=0$, так что

$$u_l^{(\zeta\pm)}(x_{\zeta}) = D_l^{(\zeta\pm)} \sin\left(\kappa_l^{(\zeta)} x_{\zeta}\right), \tag{11}$$

из которого при $u_l^{(\zeta \pm)}(x_{\zeta} = a) = 0$ имеем, что $\kappa_l^{(\zeta)} x_{\zeta} = \pi n_l^{(\zeta)} a \Big(n_l^{(\zeta)} = 1, 2, ... \Big)$, откуда

$$E_{l}^{(\zeta)} = V_{l} + \frac{\pi^{2}\hbar^{2}}{2m_{l}^{*}a^{2}} \left(n_{l}^{(\zeta)}\right)^{2} \left(1 + \frac{2\gamma_{l}m_{l}^{(*)}k_{\perp}^{(\zeta)}}{\hbar^{2}}\right).$$
(12)

Таким образом, энергетический спектр электронов в направлении размерного квантования состоит из набора неэквидистантных дискретных уровней, зависящих от волнового вектора $k_{\perp}^{(\zeta)}$ (см. рис. 1).

Отметим здесь, что величина $2\gamma_l m_l^{(*)} k_{\perp}^{(\zeta)} / \hbar^2$ равна $1.74 \times 10^{-11} k_{\perp}^{(\zeta)}$ для InSb, $4 \times 10^{-12} k_{\perp}^{(\zeta)}$ для GaSb, в которых можно пренебречь спин-зависимой перенормировкой эффективной индуцированной массы, гамильтонианом Дрессельхауза при расчетах волновых функций электронов или переноса их через потенциальные ямы конечных размеров в многослойной полупроводниковой структуре [10].

В этом случае из граничные для $u_l^{(\zeta\pm)}(x_{\zeta})$ vсловий И $rac{1}{m_l^*} rac{\partial u_l^{(\zeta\pm)}(x_\zeta)}{\partial x_\zeta}$, которые описывают непрерывность волновых функций электронов интерфейсах, на нетрудно получить систему линейных уравнений для коэффици- $A_{l}^{(\zeta \pm)}, B_{l}^{(\zeta \pm)},$ HO ентов учет величины $2\gamma_I m_I^{(*)} k_{\perp}^{(\zeta)} / \hbar^2$ в энергеспектре дает тическом лишь небольшую поправку к $A_l^{(\zeta \pm)}, B_l^{(\zeta \pm)}$. Решение этой системы позволяет рассчитать матричные элементы матрицы переноса $\widehat{T}_{l}^{(\zeta \pm)}$ (см., н-р, [10]). Этот случай требует отдельного рассмотрения, чему будет посвящена отдельная работа.

Рис. 1. Спин-зависимый размерноквантованный энергетический спектр электронов в GaAs.

Работа частично финансирована грантом ОТ-Ф2-66.

ЛИТЕРАТУРА

- 1. A. Voskoboynikov, S.S. Liu, C.P. Lee, Phys. Rev. B 58, 15397-15402 (1998).
- 2. A. Voskoboynikov, S.S. Liu, C.P. Lee, Phys. Rev. B 59, 12514-12521 (1999).
- 3. Ю.А. Бычков, Э.И. Рашба, Письма в ЖЭТФ **39**, 66-69 (1984).
- 4. T. Koga, J. Nitta, Y. Takayanagi, S. Datta, Phys. Rev. Lett. 88, 126601-126608 (2002).
- V.I. Perel', S.A. Tarasenko, I.N. Yassievich, S.D. Ganichev, V.V. Bel'kov, W. Prettl, Phys. Rev. B 67, 304-307 (2003).
- 6. П.С. Алексеев, В.М. Чистяков, И.Н. Яссиевич, ФТП 40, №12, 1436-1442 (2006).
- 7. G. Dresselhaus, Phys. Rev. 100, 580-587 (1955).
- 8. E.L. Ivchenko, G.E. Pikus. Superlattices and Other Heterostructures. Symmetry and Optical Phenomena (Springer, Berlin, 1995).
- 9. Э.И. Рашба, ФТТ 2, №2 12241-228 (1960).
- 10. В.Р. Расулов. Изв. ВУЗов. Физика 59, №10,156-159 (2016).