ФИЗИКА-ТЕХНИКА ИНСТИТУТИ, ИОН ПЛАЗМА ВА ЛАЗЕР ТЕХНОЛОГИЯЛАРИ ИНСТИТУТИ, САМАРҚАНД ДАВЛАТ УНИВЕРСИТЕТИ ҲУЗУРИДАГИ ИЛМИЙ ДАРАЖАЛАР БЕРУВЧИ DSc.27.06.2017. FM./T.34.01 РАҚАМЛИ ИЛМИЙ КЕНГАШ

ТОШКЕНТ ДАВЛАТ ТЕХНИКА УНИВЕРСИТЕТИ

ЭРГАШОВ ЁҚУБ СУВОНОВИЧ

ИОН БОМБАРДИМОН УСУЛИ БИЛАН Мо ВА Si СИРТИДА ВА СИРТ ОСТИ СОХАЛАРИДА ХОСИЛ ҚИЛИНГАН НАНОЎЛЧАМЛИ ТУЗИЛМАЛАРНИНГ ШАКЛЛАНИШ ҚОНУНИЯТЛАРИ ВА ЭЛЕКТРОН ХУСУСИЯТЛАРИ

01.04.04 – Физик электроника

ФИЗИКА-МАТЕМАТИКА ФАНЛАРИ БЎЙИЧА ФАЛСАФА ДОКТОРИ (PhD) ДИССЕРТАЦИЯСИ АВТОРЕФЕРАТИ

Тошкент – 2017

Физика-математика фанлари бўйича фалсафа доктори (PhD) диссертацияси автореферати мундарижаси

Оглавление автореферата диссертации доктора философии (PhD) по физико-математическим наукам

Contents of dissertation abstract of doctor of philosophy (PhD) on physicalmathematical sciences

Эргашов Ёкуб Сувонович

Ион бомбардимон усули билан Мо ва Si сиртида ва сирт ости сохаларида	
хосил қилинган наноўлчамли тузилмаларнинг шаклланиш қонуниятлари ва	
электрон хусусиятлари	3

Эргашов Ёкуб Сувонович

Закономерности формирования и электронные свойства наноразмерных
структур, созданных на поверхности и приповерхностной области Мо и Si
методом ионной бомбардировки 21

Ergashov Yokub Suvonovich

Formatic	on patt	erns and electr	onic prop	pertie	es of r	nanosc	ale s	struct	ures create	ed or	the
surface	and	near-surface	region	of	mo	and	si	by	method	of	ion
bombard	ing										39

Эълон қилинган ишлар рўйхати	
Список опубликованных работ	
List of published works	

Физика-математика фанлари бўйича фалсафа доктори (PhD) диссертацияси мавзуси Ўзбекистон Республикаси Вазирлар Маҳкамаси ҳузуридаги Олий аттестация комиссиясида B2017.1. PhD/FM24 рақам билан рўйҳатга олинган.

Диссертация Тошкент давлат техника университетида бажарилган.

Диссертация автореферати икки тилда (ўзбек, рус, инглиз (резюме)) веб-саҳифанинг fti-kengash.uz ҳамда «ZiyoNet» ахборот-таълим портали www.ziyonet.uz манзилларига жойлаштирилган.

Илмий маслахатчи:	Умирзаков Болтаходжа Ерматович физика-математика фанлари доктори, профессор				
Расмий оппонентлар:	Эгамбердиев Бахром Эгамбердиевич физика-математика фанлари доктори, профессор				
	Турсунметов Комил Ахмедович				

физика-математика фанлари доктори, профессор

Етакчи ташкилот:

Фарғона политехника институти

Диссертация химояси Физика-техника институти, Ион-плазма ва лазер технологиялари институти, Самарқанд давлат университети хузуридаги DSc.27.06.2017. FM./T.34.01 рақамли Илмий кенгашнинг 2017 йил «__» _____ соат ____ даги мажлисида бўлиб ўтади. (Манзил: 100084, Тошкент шахри, Бодомзор йўли кўчаси, 2б-уй. Тел./факс: (99871) 235-42-91; e-mail: lutp@uzsci.net, Физика-техника институти мажлислар зали.)

Диссертация билан Физика-техника институтининг Ахборот-ресурс марказида танишиш мумкин. (____ ракам билан рўйхатга олинган.) Манзил: 100084, Тошкент шахри, Бодомзор йўли кўчаси, 2б-уй. Физика-техника институти. Тел./факс: (99871) 235-30-41.

Диссертация автореферати 2017 йил «____»_да тарқатилди. (2017 йил «____» даги ____ рақамли реестр баённомаси.)

> С.Л. Лутпуллаев Илмий даражалар берувчи илмий кенгаш раиси, ф.-м.ф.д., профессор

> > А.В. Каримов

Илмий даражалар берувчи илмий кенгаш илмий котиби, ф.-м.ф.д., профессор

С.А. Бахрамов

Илмий даражалар берувчи илмий кенгаш қошидаги илмий семинар раиси, ф.-м.ф.д., профессор

КИРИШ (фалсафа доктори (PhD) диссертацияси аннотацияси)

Диссертация мавзусининг долзарблиги ва зарурати. Жахон микёсида бугунги кунда жадал ривожланаётган физик электроника сохасида истикболли йўналишлардан бири наноматериаллар шаклланишида ўлчамга боғлиқлик хусусияти, электрон тузилмаларнинг оптик, электр, магнит ва бошка хусусиятларининг боғликлиги бўйича тадкикот ишлари хисобланади. Бу хисобдан ўлчамлилик эффектини материалларнинг табиатига боғликлиги ва бу хусусият кам наноўлчамдаги металларга яримўтказгич хусусиятини содир килиши, яримўтказгичларда эса ўлчамнинг кичиклашиши уларнинг боғликлигини тақиқланган зона кенглигига тадкик килиш асосий вазифалардан бири хисобланади.

Мустакиллик йилларида мамлакатимизда физик электроника сохасини ривожлантириш борасида физик кимёвий самарали ходисалар ва жараёнларни қамраб олган электрон асбобларнинг хар хил турларини яратишда фундаментал ахамиятга эга бўлган тадкикотларга алохида эътибор каратилди. Бу борада соханинг амалиётда ишлатиладиган маълум электрофизик хоссаларга эга бўлган сифатли янги материаллар базасини мустахкамлаш хамда замонавий талаблар асосида кристалларга кушимча элементлар киритиш йўли билан сифатини ошириш, уларнинг олиш технологияларини мукаммаллаштириш борасида сезиларли натижаларга эришилмокда. Узбекистон Республикаси янада ривожлантириш бўйича Харакатлар стратегияси асосида физик электрониканинг нанова ишлаб микроэлектроника сохасида чиқарилаётган элемент базалари функцияларини кенгайтириш муаммоларини хал килиш, уларни кенг кўламда қўлланишини таъминлаш учун мухим ахамиятга эга.

Хозирги кунда жахонда наноўлчамли тузилмаларнинг шаклланиш конуниятлари ва электрон хусусиятларини тадкик килиш, кремний асосидаги структураларнинг металлар адгезиясини ошишриш ва контакт электр каршилигини кескин камайтириш, ишлаш барқарорлигини таъминлаш имконини беради. Бу борада максадли илмий тадкикотларни, жумладан қуйидаги йўналишлардаги илмий изланишларни амалга ошириш: хар хил энергиялар ва дозаларда метал ионларини имплантация килиш; металл ионлари билан бомбардимон қилиш ва кетма-кет қиздириш ёрдамида яримўтказгичларда наноўлчамли фазалар хосил бўлишининг асосий механизмлари ва конуниятларини ўрганиш; юпка оксид катлами билан қопланган Si ни қисман зарядланган металлар билан чанглатишнинг ўтиш қатламлари шаклланишига таъсирини тадқиқ қилиш. Бу йўналишда олиб борилаётган илмий-тадкикот ишлари ушбу диссертация мавзусининг долзарблигини изохлайди.

Ўзбекистон Республикаси Президентининг 2010 йил 15 декабрдаги ПҚ–1442-сон «2011–2015 йилларда Ўзбекистон Республикаси саноатини ривожлантиришнинг устувор йўналишлари тўғрисида»ги Қарори ва 2017 йил 17 февралдаги ПҚ-2789-сон «Фанлар академияси фаолияти, илмий тадқиқот ишларини ташкил этиш, бошқариш ва молиялаштиришни янада такомиллаштириш чора-тадбирлари тўғрисидаги»ги Қарори ҳамда мазкур фаолиятга тегишли бошқа меъёрий-ҳуқуқий ҳужжатларда белгиланган вазифаларни амалга оширишга ушбу диссертация тадқиқоти муайян даражада ҳизмат қилади.

Тадқиқотнинг республика фан ва технологиялари ривожланиши устувор йўналишларига мослиги. Мазкур тадқиқот республика фан ва технологиялар ривожланишининг III. «Энергетика, энергоресурс тежамкорлиги, транспорт, машина ва асбобсозлик, замонавий электроника, микроэлектроника, фотоника ва электрон асбобсозлиги ривожланиши» нинг устувор йўналишига мувофиқ бажарилган.

Муаммонинг ўрганилганлик даражаси. Бугунги кунга қадар илмий тадқиқотчилар ва ишлаб чиқувчиларнинг изланишлари яримўтказгич ва металл матрицаларда наноўлчамли тузилмалар яратиш ва уларнинг физиккимёвий хусусиятларини ўрганишга қаратилган, Хитой ва Америка олимлари W.S. Cho, J.Y. Kim, J.M. Gallego, R. Miranda томонидан Si(111) сиртида ўта юпқа (1-2 моноқатлам) Со пленкасининг ўсиш жараёлари ўрганилган, Bei Li, Jianlin Liu, U.Starke, W.Weiss, M.B. Гомоюновлар Со ни Si га қаттиқ фазали ўтқазишда Со ва Si атомлари орасида кимёвий алоқа ва CoSi₂ наноқатлами ҳосил бўлиши ва улар асосида турли хил асбоблар композити яратишда фойдаланиш имкониятлари тадқиқ қилинган.

Ўзбекистон олимлари, жумладан Б.Е.Умирзаков ва унинг ходимлари томонидан биринчи марта кичик энергияли ион бомбардимон усулини кўллаган холда Pd, Si, GaAs ва CaF₂ сирт сохалари бир ва кўп компонентли наноўлчамдаги кристалл фазалар ва пленкалар олинган.

Тадкикотнинг диссертация бажарилган илмий-тадкикот муассасасининг илмий-тадкикот ишлари режалари билан боғликлиги. Диссертация тадкикоти Тошкент давлат техника университети грантлар тематик режасининг К-4-001-сон «Кремний асосида кўпкатламли наноўлчамли МДЯ ва ЯДЯ гетероструктуралар олиш технологиясини ишлаб чикиш» (2012–2014), Ф2–41-сон «Турли хил табиатли материалларни ион имплантация килинганда содир бўладиган чангланиб кетиш, атомларнинг юзага кириши, наноўлчамли тизимлар ва зўриккан катламларининг хосил бўлиш жараёнларини назарий ва экспериментал ўрганиш» (2012–2016), А-4-7-сон «Микро ва оптоэлектроника, шунингдек куёш энергетикаси асбоблари учун кремний ва арсенид галий монокристалл пленкалари сирт ости катламларида гетероэпитаксиал наноўлчамли тузилмаларни синтез килиш чиқиш» (2015–2017) фундаментал технологиясини ишлаб лойихалари доирасида бажарилган.

Тадқиқотнинг мақсади эпитакция ва ион имплантация усуллари билан Мо ва Si монокристаллари асосида наноўлчамли тузилмалар ва кўп қатламли тизимлар олиш, уларнинг шаклланиш қонунларини ўрганиш, физик механизмларини очиб беришдан иборат.

Тадқиқотнинг вазифалари:

ҳар хил энергиялар ($\tilde{E}_0=0,5-5$ кэВ) ва дозаларда ($D=10^{14}-10^{17}$ см⁻²) Ва⁺ ва Nb⁺ ионлари имплантация қилинган Мо(111)нинг сирти таркиби, электрон ху

сусиятлари, микротузилмаси ва морфологиясини ўрганиш;

нано ўлчамли фазаларнинг хосил бўлишида молибденнинг эмиссион хусусиятларига таъсирини бахолаш;

Na⁺ и Co⁺ ионлари билан бомбардимон қилиш ва кетма-кет қиздириш ёрдамида Si(111)нинг сирт ости соҳасида MeSi₂ боғланишли наноўлчамли фазалар ҳосил бўлишининг асосий механизмлари ва қонуниятларини ўрганиш. Сирт ости қатламининг турли чуқурликларида шаклланган MeSi₂ фазаларининг қопланиш даражаси ва тақиқланган зона кенглигини ўрганиш усулини ишлаб чиқиш;

Si сиртини O₂⁺ ионлари билан бомбардимон қилиш натижасижада SiO₂ нанопленкасининг ҳосил бўлиш қонуниятларини ўрганиш. ЭҚЭС, УБЭС ва ёруғликнинг пленкалардан ўтиши усулларидан фойдаланилган ҳолда ҳар ҳил ҳалинликлардаги SiO₂ нанопленкасининг энергетик зоналари параметрларини аниҳлаш;

юпқа оксид қатлами билан қопланган Si ни қисман зарядланган металлар билан чанглатишнинг ўтиш қатламлари шаклланишига таъсирини ўрганиш;

Si ни керакли энергияда Me⁺ (Me–Na ва Co) ионлари балан имплантация килиш ва кейинги киздириш асосида MeSi₂/Si/MeSi₂/Si икки катламли тизимини олиш усулини ишлаб чикиш;

Si ни орқа томондан (таглик томондан) легирлаш. Si ни таглик томондан бир хил легирлашнинг самарали режимини аниқлаш.

Тадқиқотнинг объекти сифатида кенг диапазондаги энергия (0,2–40 кэВ) ва дозалар (D=10¹⁴–10¹⁷ см⁻²) билан ионлар имплантация қилинган Мо ва Si намуналаридан фойдаланилган.

Тадкикотнинг предмети металлар ва яримўтказгичлар сиртида ва сирт ости катламларидаги нанокристалл ва нанопленкалар шаклланишининг конуниятлари ва физикавий механизмлари хисобланади.

Тадкиқотнинг усуллари. Диссертацияда оже-электрон спектороскопия (ОЭС), катта энергияли электронлар дифракцияси (КЭЭД), растрли электрон микроскопия (РЭМ), ультрабинафша нурланишнинг фотоэлектронлар спектроскопияси (УБЭС), эластик қайтган электронлар спектроскопияси (ЭҚЭС), электронларнинг характерли энергия йўқотиш спектроскопияси (ЭХЭЙС), атом-кучланишли микроскопия (АКМ), ўтувчи ёруғлик нурларининг спектроскопияси каби тадқиқот усуллари қўлланган.

Тадқиқотнинг илмий янгилиги қуйидагилардан иборат:

Nb+ ионларини имплантация қилиш ва кейинги қиздиришда Мо нинг сирт ости қатламларида Nb+Мо туридаги интерметал ҳосил бўлиши Мо Ферми сатҳининг қуйи қисмида ниобийнинг 4d электронлари зонасини ҳосил бўлиши ва натижада Мо валент электронларининг ҳолат зичлиги ўзгариши билан боғлиқлиги очиб берилган;

Мо га Ва⁺ ионлари имплантация қилинганда интерметалл боғланиш хосил бўлмаслиги, аммо чиқиш ишининг камайиши ва юза ости қатламлари атом зичлигининг ошиши натижасида иккиламчи ва фотоэлектронларнинг эмиссия эффективлиги 2 ва ундан ортиқ ошиши экспериментал аниқланган. Si сирт ости қатламларида ион имплантация ва кейинги қиздириш жараёнида MeSi₂ нинг наноўлчамли фазалари ва қатламлари шаклланишининг асосий қонуниятлари аниқланган, шунингдек уларнинг ўлчамлари ва энергетик зона параметрларини баҳолашнинг ўтаётган ёруғлик интенсивлиги ўзгаришига асосланган усули ишлаб чиқилган;

Si сиртига O₂⁺ ионларини имплантация қилиш усули билан турли қалинликлардаги (d≈20–100Å) тақиқланган зона кенглиги 8,5–9 эВ бўлган бир жинсли SiO₂ нинг поликристалл наноплёнкаси олиш технологияси ишлаб чиқилган;

чангланаётган металл (Al) атомлари окими таркибида бир неча фоиз тезлашган ионлар (E₀=1–2 кэВ) мавжудлиги Si сиртидаги окис плёнканинг тўлик бузилишига, ўтиш катлами хосил бўлишига, кремний тагликларда металлар адгезияси ошишига ва контакт электр каршилигининг кескин камайишига олиб келиши асосланган;

умумий қалинлиги 40–50 нмдан ошмайдиган наноўлчамдаги икки қатламли MeSi₂/Si/MeSi₂/Si тизимини ҳосил қилиш усули ишлаб чиқилган ва сиртдаги CoSi₂ плёнкасининг қалинлиги 3–5 нм, сирт остидаги плёнка қалинлиги эса 10–12 нм, MeSi₂ қатламлари орасидаги Si плёнкасининг қалинлигини 10–20 нм ни ташкил этиши кўрсатилган.

Тадқиқотнинг амалий натижалари қуйидагилардан иборат:

Si сиртида ҳар ҳил қалинликларда MeSi₂ туридаги наноўлчамли фазалар ва икки қатламли MeSi₂/Si/MeSi₂/Si тизимни олиш усули ишлаб чиқилди;

Si ни таглик томондан легирлаш усули таклиф қилинди. Олинган натижалар асосида микро-, нано- ва оптоэлектроника асбобларни ишлаб чиқиш бўйича илмий таклифлар берилди.

Тадқиқот натижаларининг ишончлилиги замонавий ўлчаш усуллари ва натижаларни қайта ишлашда бир бирига боғлиқ бўлмаган тажрибалар статистикаси, ҳамда тоза Мо ва Si лар бўйича олинган тажриба натижалари бошқа муаллифлардан томонидан олинган илмий натижаларга мос келиши билан изоҳланади.

Тадқиқот натижаларининг илмий ва амалий аҳамияти. Тадқиқот натижаларининг илмий аҳамияти турли табиатли материаллар сиртида ва сирт ости қатламларида ҳосил қилинган наноўлчамдаги структуралар шаклланиш механизми ва электрон хусусиятларини тушунтириш имконини бериши, улар наноўлчамли гетероэпитаксиал структуралар ҳосил қилиш назарияси ва бундай структураларда зарядланган зарраларнинг ҳаракатчанлиги назарияси ривожланишининг фундаментал базаси бўлиши мумкинлиги билан изоҳланади.

Тадқиқот натижаларининг амалий аҳамияти таглик томондан Si ни бир жинсли легирлаш, Si сиртида SiO₂ нинг текис тақсимланган наноўлчамдаги фазаси ва нанопленкасини олиш, ҳар хил турдаги МОП, МДП, ПДП тизимларни ишлаб чиқиш қаттиқ жисм электроникаси, жумладан, қуёш энергетикаси асбоблари учун контактлар ва тўсиқли қатламлар ҳосил қилишга хизмат қилади.

7

Тадқиқот натижаларининг жорий қилиниши. Мо ва Si сиртида ва сирт қатламлари соҳасида наноўлчамли фазалар ҳосил бўлиши бўйича олинган натижалар асосида:

Мо ва Si сиртида ва сирт қатламлари соҳасида наноўлчамли фазалар ҳосил бўлиши бўйича олинган натижалар ОТ-АЗ-56 «Юқори марганец силициди пардаси асосида инфракизил нурни термоэлектрик ўзгартириш ва иссиклик нурини ўтаэффектив холда совутилмай қайд этувчи приёмниклар яратиш» ва Ф – 2-31 "Наноўлчамли металлар силицид пленкаларни структураси ва физик хоссаларини ўрганиш ва термосезгир структуралар хосил қилиш" давлат грантларини бажаришда фойдаланилган (Ўзбекистон Республикаси Фан ва технология агентлигининг 2017 йил 19 июлдаги ФТА-0211/360-сон маълумотномаси). Илмий натижанинг қўлланиши NbMo қотишмаси термоядро реакторларининг ички деворларида ишлатиладиган молибденнинг силлиқлигини яхшилаш, дислокацияларни камайтириш ва ташқи таъсирларга чидамлилигини ошириш имконини берган;

Si сирт ости қатламларида MeSi₂ нинг наноўлчамли фазаси ва қатлами шаклланишининг асосий қонуниятлари ўрганилган ва уларнинг ўлчамлари хамда энергетик зона параметрларини баҳолашнинг эффектив усули асосида электрон қурилма яратилган (VIII Республика Инновацион ғоялар, технологиялар ва лойиҳалар ярмаркаси катологи "Электрон техника ускуналари ҳароратини ўлчовчи ва сақлаб турувчи электрон қурилмаси»). Ишлаб чиқилган қурилма энергияни тежаш имконини берган.

Тадқиқот натижаларининг апробацияси. Мазкур тадқиқот натижалари 19 та халқаро ва 3 та республика илмий-амалий анжуманларида мухокамадан ўтказилган.

Тадкикот натижаларининг эълон килинганлиги. Диссертация мавзуси бўйича жами 34 та илмий иш чоп этилган, шулардан Ўзбекистон Республикаси Олий аттестация комиссиясининг докторлик диссертациялари асосий илмий натижаларини чоп этиш тавсия этилган илмий нашрларда 10 та мақола нашр этилган.

Диссертациянинг тузилиши ва ҳажми. Диссертация таркиби кириш, тўртта боб, хулоса, фойдаланилган адабиётлар рўйхатидан иборат. Диссертациянинг ҳажми 135 бетни ташкил этади. Кириш қисмида ўтказилган тадқиқотларнинг долзарблиги ва зарурияти асосланган, тадқиқотнинг мақсади ва вазифалари, объект ва предметлари тавсифланган, республика фан ва технологиялари ривожланишининг устувор йўналишларига мослиги кўрсатилган, тадқиқотнинг илмий янгилиги ва амалий натижалари баён қилинган, натижаларнинг илмий ва амалий аҳамияти очиб берилган, тадқиқот натижаларини амалиётга жорий қилиш, нашр этилган ишлар ва диссертация тузилиши бўйича маълумотлар келтирилган.

Диссертациянинг «Металл ва яримўтказгичлар асосида истикболли наноўлчамдаги структуралар олиш муаммолари ва уларнинг физик хусусиятларининг ўрганилиш холати» деб номланган биринчи бобида Мо ва Si асосида тартибли жойлашган наноструктуралар хосил килиш ва кўп катламли наноўлчамдаги гетероэпитаксиал пленкалар хамда уларнинг физиккимёвий хусусиятларини ўрганишга бағишланган адабиётлар тахлили ёритилган. Асосий ахамият ион бомбардимон усулидан фойдаланиш оркали олинган структураларга ва уларнинг хосил бўлиш механизмига каратилган. Катор адбиётлар тахлили шуни кўрсатадики, квант нукталар таркиби, ўлчами ва шаклини ўзгартириш оркали структураларнинг физик хоссалари ва электрон хусусиятларини назоратли бошкариш имкони мавжуд.

Хозирги вақтга қадар турли табиатли материаллар сиртида физик хусусиятлари назоратли бошкариладиган нанообъектлар хосил килиш тўғрисида ишончли тадқиқот натижалари мавжуд эмас. Икки қатламли наноўлчамли силицид тизимларини яратиш бўйича тадкикотлар олиб борилмаган. Ярим ўтказгичларнинг турли чуқурликларида наноўлчамдаги фазалар шаклланиш механизми хакида маълумотлар учрамайди. Назарий ва амалий тадкикотларни асосида замонавий физик тахлил килиш электрониканинг наноўлчамли уларнинг структуралар олиш ва хусусиятларини ўрганиш билан боғлиқ мавжуд долзарб муаммолар диссертациянинг максади ва вазифаларини белгилашга асос бўлди.

Диссертациянинг «Наноўлчам тизимли материалларни олиш ва хусусиятлрини ўрганиш базавий курилмасининг физик асосий принциплари» деб номланган иккинчи бобида наноўлчамдаги структуралар физик хусусиятларини ўрганишга бағишланган олиш ва уларнинг экспериментал курилмалар ёритилган. Тадкикот объекти сифатида Мо ва Si монокристаллари танланган. Ион бомбардимон қилиш, қиздириш ва асосий тажрибалар ўта юқори вакуумли универсал қурилмада амалга оширилган. Металл ионлари энергияси E_0 0,5 дан 40 эВ гача ўзгартирилади, Ar^+ ва O_2^+ учун энергия Е₀=0,5-5 кэВ ораликда ўзгаради. Намунанинг элемент ва кимёвий таркиби оже-электрон спектроскопия (ОЭС) усулида ўрганилди, энергетик зоналар параметрлари ва валент электронлар зичлиги холати УБЭС, ЭКЭС ва ўтаёган ёруғлик интенсивлигини ўлчаш усуллари оркали аниқланди. Сиртнинг микрорельефи ва панжара параметри тўғрисидаги маълумотлар «JEOL» растрли электрон микроскопда (РЭМ), «ЭМР-102» катта энергияли электрон дифрактометр, XIA-200 атом кучланишли

9

микроскоп (АКМ) ва UV–1280 спектрофотометр каби стандарт курилмаларда олинган.

Диссертациянинг «Молибден ва кремнийларнинг сиртида яратилган пленкалар таркиби наноўлчамли структура ва ва электрон хусусиятлари» деб номланган учинчи бобида молибден ва кремнийларнинг сиртида яратилган наноўлчамли структура ва пленкалар таркиби ва электрон хусусиятлари ўрганилган. Олинган натижаларга кўра Мо га Nb⁺ ионлари унча юкори бўлмаган дозаларда (D≤10¹⁵ см⁻²) имплантация килинганда юзада ва унга якин катламларда Nb+Mo туридаги нанокластерли интерметаллид фазалар хосил бўлади. Шунинг учун фотоэлектронлар спектрида Ферми сатхидан пастда 0,5 эВ ва 4,3 эВ энергияли кушимча чуккилар пайдо булади. Ниобийнинг 4d электронлари билан булган бу сатхлар ўз навбатида ўзларининг сатх ости сатхларини яратади ва улар молибден такикланган зонасининг ГР симметрияси йўналишида жойлашади. Юкори дозаларда Nb⁺ $(D \approx D_{TVM} \approx 8 \cdot 10^{16} \text{ см}^{-2})$ Мо сирт юзасида ~30–40 Å калинликдаги юпка Nb+Mo интерметаллид қатлами хосил бўлади. Бу холда Мо нинг чиқиш иши ва эмиссион хусусияти сезиларли даражада ўзгармайди. 1-расмда Ва⁺ ионлари 6.10^{16} см⁻² $E_0 = 1$ энергияда, дозада (тўйиниш билан кэВ дозаси) имплантацияланган ва турли хароратларда қиздиришдан сўнг олинган Мо(111)нинг фотоэлектрон спектри келтирилган. Хар бир хароратда 30 дакика давомида киздирилган. Ион имплантациясидан сўнг энергетик таксимот эгри чизиғи остидаги майдонча, яъни фотоэлектронлар квант чикиши тахминан 2 маротаба ортган (2-эгри чизик), спектр кенглиги $\Delta E 1,5-$ 2 маротаба ортган, Мо га тегишли чукки интенсивлигининг кескин камайган ва ўз навбатида Ва га тегишли бўлган чўққилар пайдо бўлган.

1 – Мо (111), 2 – Мо (111), Ва⁺ ионлари билан E₀=1 кэВ ва D=6·10¹⁶ см⁻² дозада имплантация қилинган, 3 – Ва⁺ ионлари билан имплантация қилинган Мо T=1000 К қиздирилган.

1-расм. hv=10 эВ энергияда олинган фотоэлектрон спектрлар

ОЭС натижаларига кўра отн.ед. ИОН имплантациядан сўнг сиртда ва сиртдан 40-50 Å чуқурликкача Ва концентрацияси 45-50 ат.% ни ташкил этади, лекин Mo ва Ba атомлари ўзаро кимёвий боғланиш хосил килмайди. Бундай боғланиш Т~1300 К хароратгача қиздирилганда, яъни Ва атомларининг тўлик буғланиши рўй берганда хам содир бўлмайди.

> Шуни айтиш мумкинки, бундай холатда Мо сирт қатламида θ =40–50 Å қалинликда Мо+Ва механик қотишмасидан иборат пленка шаклланади. Фотоэлектрон

спектрдаги [Мо+Ва] га тегишли чўққиларнинг жойлашиши «тоза» Мо ва Ва чўққиларидан озгина (0,1–0,2 эВ) фарқланишига сабаб Ва атомлари киритилгани натижасида Мо панжарасида деформациянинг вужудга келиши ҳамда сиртнинг тартибсизланиши валент электронларнинг қайта тақсимланишига олиб келишидадир деб қараш мумкин.

1-жадвалда тоза ва ионли легирланган Мо(111) нинг асосий эмиссион параметрлари келтирлган. Жадвалдан кўринадики Ва⁺ ионлари имплантация килингандан кейин hv=5,5 эВ бўлганда фотоэлектронларнинг квантли чикиши 8 марта оптимал температурада киздирилгандан кейин эса 6 марта ошади, бу холда σ_m нинг киймати 1,5-2 марта ошади. Nb⁺ ионлари имплантация килинганда Мо нинг эмиссион эффективлиги, углероднинг адсорбцияси туфайли, сезиларли (1,2-1,5 марта) камаяди. 1400 К температурада киздирилгандан кейин еф нинг бироз камайиши (~ 0,1эВ), σ_m ва Y ларнинг (5÷6 % га) ошиши кузатилади.

1-жадвал

Nb⁺ ва Ba⁺ ионлари имплантация килинган Мо(111) учун еф, Ү ва о нинг кийматлари

	Mo(111)	$Nb^+ \rightarrow M$	Io, $E_0 = 3$	$Ba^+ \rightarrow Mo, E_0 = 1$		
Параметрлари		кэВ, D =	$8 \cdot 10^{16} \mathrm{cm}^{-2}$	$\kappa \to B, D = 6 \cdot 10^{16} \text{см}^{-2}$		
		Т = 300 К	Т= 1400 К	Т = 300 К	Т=1100 К	
еφ, эВ	4,51	4,8	4,4	2,6	2,2	
$Y \cdot 10^{-6} (hv = 5,5 B)$	6,2	4,1	6,5	50	35	
$\sigma \left(E_{p}^{*} = 500 \text{3B} \right)$	1,4	1,2	1,5	2,8	2,1	

*Е_р – бирламчи электронлар энергияси.

Электронлар спектроскопияси ва микроскопияси комплекс усулларидан фойдаланиб Si да ион имплантация (Co⁺, Na^{+,} O₂⁺) ва чанглатиш (Cu) орқали хосил қилинган наноўлчамли фазаларнинг таркиби, структураси ва электрон хусусиятлари ўрганилди. Айрим холларда натижаларни солиштириш учун диэлектриклар NaCl ва CaF₂ сиртида хосил қилинган наноўлчамдаги фаза хусусиятлари келтирилган. Бу пленкалар кўп қатламли гетероструктуралар олиш, оптик ва электрон қурилмалар, қуёш элементлари ва фотосезгир асбобларда кенг қўлланилади.

Биринчи марта Si нинг турли хил чуқурликларида олинган MeSi₂ нанокристалл ва наноқатламлари тақиқланган зонаси кенглиги ўтаётган ёруғликнинг интенсивлигини ўлчаш усули ёрдамида аниқланди. 2-расмдан кўринадики, ёруғлик интенсивлигининг кескин камайиши «тоза» Si учун $hv\sim1,0$ эВ энергиядан бошланади, CoSi₂ пленкаси учун эса $hv\sim0,5$ эВ энергиядан бошланади (1- ва 3-эгри чизиқлар). Бу эгри чизиқларнинг фотонлар энергияси ўқига экстрапояцияси Si ва CoSi2 пленкалари учун Еg қийматлари мос равишда ~1,1 эВ ва 0,6 эВ га тенг эканлигини кўрсатади.

Si да CoSi₂ нанокристаллари хосил килинган холда ёруғлик интенсивлигининг кескин камайиши иккита қийматда: 0,8 эВ ва 1 эВ намоён

чизиқ). Биринчи кескин бўлади (2-расм, 2-эгри камайиш CoSi₂ нанокристаллари билан қопланган майдонларда ёруғликнинг ютилиши билан боғлиқ бўлса, иккинчи камайиш кремнийнинг CoSi₂ нанокристаллари билан қопланмаган майдонларида ёруғлик ютилиши билан боғлиқ. Шунга асосан диаметри ~25–30 нм бўлган CoSi₂ нанористалли учун E_g қиймати ~0,85–0,9 эВ га тенг дейиш мумкин. Демак, нанокристалларнинг тақиқланган зона кенглиги нанопленкаларникига қараганда сезиларли катта бўлар экан. 2-эгри чизикдан Si сиртининг CoSi₂ нанофазалари билан копланиш даражасини бахолаш мумкин. Бу қийматни θ≤1 хол учун:

$$Q = 1 - \frac{I_{CoS_{\underline{b}}}}{I_{S_{i}}} \tag{1}$$

формула ёрдамида аниклаш мумкин. 2-расмдаги 2-эгри чизикдан Si+HK CoSi₂ холида *hv*≈0,9 эВ, I_{CoSi2}/I_{Si} нисбат эса ~0,55, θ эса 0,45 кийматларни ташкил этиши кўриниб турибди ва бу киймат ОЭС хамда РЭМ усулларида олинган натижаларга жуда якин.

Si ва NaCl сиртида Cu пленкаси ўстирилишининг бошланғич ҳолатлари (d≈0,2–5 моноқатлам) ўрганилган. d≤1 бўлганда пленканинг оролчали ўсиши, d≈1–5 моноқатлам оралиқда нотекис ўсиши аниқланди. Cu наноплекаси 1–

1 – Si (111); 2 – Si да CoSi₂ нанокристалли билан; 3 – Si да CoSi₂ нинг 2,5–3,0 нм қалинликдаги нанопленкаси бор.

2-расм. Ўтган ёруғлик интенсивлигининг фотонлар энергиясига боғлиқлиги

1,5 моноқатламда тор зонали яримўтказгич хусусиятига (E_{g=}0,5–0,6 эВ) эга бўлиши кўрсатилди.

3-расмда Си атомлари билан қалинликларда копланган турли NaCl электронларнинг учун характерли энергия йўкотиши усулида олинган спектри келтирилган. Си га хос бўлган плазмонли тебранишлар ($\hbar\omega_s$ ва $\hbar\omega_v$) чўккиси бўлган d~1-1,5 монокатламдан бошланади ва бу пленка шакллана бошлаганлигини кўрсатади. Аммо ћо_s ва ћо_v чўққиларжойлашиш холати нинг катта энергия томонга бироз силжиган ва уларнинг интенсивликлари массив Си никидан кичик бўлади. d_{min}≥ 3-

4 моноқатламда электронларнинг характерли энергия йўқотиш чўққилари массив Си пленкасига тўлиқ мос келади.

 O_2^+ ионлари билан имплантацияланган Si сирт юзасида SiO₂ нанопленкаси шаклланишининг мухим жихатлари ўрганилган. hv=10,8 ва 21,2 эВ энергияларда Si (111)нинг ва SiO₂/Si (111) нанопленкаси фотоэлектрон спектрларида максимум-минимум нозик тузилмалари ажралиб туради (4-расм). Si сиртида асосий максимумлар мавжудлиги Si нинг 3р ва 3s валент электронлар хамда Si сиртида ғалаёнланган электронлар холати билан тушунтириш мумкин. Кремний оксидида легирловчи элемент ва таглик атомлари электрон холатларининг гибридлашиши содир бўлади ва бу ғалаёнланган электронлар чўққилари шакли ва жойлашишининг ўзгаришига олиб келади. 5-расмда Si га O_2^+ ионларини $E_0=3$ кэВ (D=8·10¹⁶ см⁻²) энергияда киритиб, кейин T=1100 К да қиздириш йўли билан олинган 50 Å қалинликдаги SiO₂ пленкасинининг АКМ ва РЭМ тасвирлари келтирилган.

Бу жараёнда силлиқ сиртли (нотекислиги 8–10 Å дан кичик) бир текис

3-расм. Турли қалинликлардаги Си атомлари ўткқазилган NaCl ХЭЙЭ спектрлари.

4-расм. Ультра бинафша нурларнинг hv=10,8 эВ (1) ва 21,2 эВ (2,3) энергияларда қайд этилган фотоэлектрон спектрлари.

яхлит пленка шаклланганлиги кўриниб турибди. Хусусан, Si га кислородни термик ўтказиш йўли билан олинган SiO₂ пленкаси сирти нотекислиги 80–100 Å ни ташкил этади. SiO₂/Si (111) холатда эса металл силицидлардан фарқли равишда эпитаксиал ўсиш кузатилмайди, поликристалл тузилма хосил бўлди. Расмдаги (5-б юқорисидаги расм) КЭЭД тасвиридан SiO₂ пленкаси алохида-алохида монокристалл блоклардан ташкил топган, аммо блокларнинг чегара ориентациялари бир-бирига мос келмайди, деб тахмин қилинади.

2-жадвалда фотоэлектронлар спектрида чўққиларнинг шаклланиш механизмлари, энергетик зоналар параметрлари ҳамда Si ва SiO₂ кристалл панжара параметрлари келтирилган. Жадвалдан кўринадики, SiO₂ нанопленкасининг тақиқловчи зонаси кенглиги ~9 эВ ни ташкил этади ва у катта қалинликдаги SiO₂ монкристаллининг қийматига мос келади.

2-жадвал

Тадқиқот		Чўк	-	Соҳа	, эВ	a, Å			
объекти	А	В	С	D	Ev	E _F	Eg	χ	
Si	3p +	3p	3s+3p	3p	5,1	4,7	1,1	4	5,43
	ΠC^*								
SiO ₂	2p(O) +	2p(O) +	2p(O) +	2p(O) +	9,1	4,5	8,9	0,1-	Поли
	3p(Si)	3p(Si)	3p(Si)	3s(Si)				0,2	кристалл

Si ва SiO₂ пленкасининг зона ва кристал панжара параметрлари

ПС*-сиртий холатлар.

Тўйиниш дозасидан бироз камрок D=8·10¹⁵-2·10¹⁶ см⁻² дозаларда SiO₂ пленкасида зичлиги 10¹⁰-10¹¹ см⁻² бўлган текис тақсимланган Si нанофазалари ҳосил бўлиши аниқланди.

Диссертациянинг **«Кремний сиртида ва сирт ости сохаларида икки катламли гетероэпитаксиал тузилмалар яратишда ион имлантациянинг кўлланилиши**» деб номланган тўртинчи бобида Si нинг турли чуқурликларида ҳосил қилинган наноўлчамли MeSi₂ фазалари ҳамда икки қатламли CoSi₂/Si/CoSi₂/Si, SiO₂/Si/CoSi₂/Si эпитаксиал гетеротизимларини олиш бўйича тадқиқот натижалари келтирилган.

Si да ион имплантацияси усулида MeSi₂ (Me-Co ва Na) наноўлчамли фазалари 1,0 дан 40 кэВ гача энергия интервалида унча юкори бўлмаган нурланиш дозаларида (D=5·10¹³-5·10¹⁵ см⁻²) ва кейинги қиздириш билан олинган. 6-расмда Co⁺ ионлари билан $E_0=15$ кэВ энергияда $D=10^{15}$ см⁻² дозада легирлангандан кейин ва 30 дакика давомида *Т*≈900 К хароратда қиздирилгач, Si (111)нинг ҳар ҳил чуқурликларда Со (*E*=765 эВ) оже чўққиси интенсивлиги ўзгариши келтирилган. Иккала холатда хам Со атомларининг максимал тақсимоти 15–16 нм қалинликда жойлашади. Қиздиришлардан сўнг Со атомлари концентрацияси максимум сохада ортганлиги ва эгри чизик камайганлигини $I_{Co}(h)$ кенглиги сезиларли таксимот ярим оркали кузатишимиз мумкин. Бу майдончаларда CoSi₂ нинг нанокристалл фазалари (~15–16 нм қалинликда) пайдо бўлди. Энергетик нуқтаи назардан айтиш мумкинки, бу фазалар сиртий фазалардан фаркли равишда сферик шаклга эга бўлади. І_{СоSi2}/І_{Si} ва hv орасидаги боғланиш ўрганилганда CoSi₂ «хажмий» нанокристаллари E_e қиймати 0,8–0,85 эВ, Si нинг шу чуқурлигида CoSi₂

а – АКМ тасвири, б – РЭМ тасвири (юкоридаги расмда КЭЭД тасвири). 5-расм. d~50 Å қалинликдаги SiO₂/Si пленкаси сиртининг АКМ ва РЭМ тасвирлари

нанокристалларининг нисбий майдончаси – 0,25–0,3 ни ташкил этиши аниқланди (7-расм).

Si(111)нинг турли икки хил чуқурлигида ион имплантацияси ва кейинги қиздириш йўли билан MeSi₂ нанокристаллини хосил қилишнинг оптимал режимлари 3-жадвалда келтирилган. Со⁺ и Na⁺ ионлари билан E₀=30 кэВ энергияда имплантацияланган Si да қиздиришларданг сўнг 26–30 нм чуқурликда нанокристалл фазалар шаклланганлиги кўринади. D=5·10¹⁴ см⁻² дозада нанокристаллнинг ўртача диаметри 5–6 нм, D=10¹⁵ см⁻² дозада эса 10–12 нм ни ташкил қилади. Энергия E₀=15 кэВ бўлганда нанокристалл фазалар 13–15 нм чуқурликда шаклланади, хосил бўлган фазанинг диаметри E₀=30 кэВ энергиядаги фаза диаметридан жуда кам фарқланади.

3-жадвал

KI	киладиган ион имплантация ва киздиришнинг оптимал режимлари									
Иондор		$E_0 = 15$	кэВ		<i>Е</i> ₀ =30 кэВ					
ионлар	D, см ⁻²	Т, К	d, нм	h, нм	D, см ⁻²	Т, К	d [*] , нм	h ^{**} , нм		
Co ⁺	5×10^{14}	1000	6–8		5×10^{14}	1000	—			
	10 ¹⁵	1000	10-12	15-16	10 ¹⁵	1000	9-10	28-30		
	5×10^{15}	1200	22-25		5×10^{15}	1100	20-25			
Na ⁺	5×10^{14}	1000	5-6		5×10^{14}	1000	_			
	10^{15}	1050	12-14	13-15	10^{15}	1100	10-12	26-28		
	5×10^{15}	1100	24.26		5×10^{15}	1100	10 12			

Si(111)нинг хар хил чукурликларида MeSi₂ нанокристалларини хосил киладиган ион имплантация ва киздиришнинг оптимал режимлари

d^{*} – нанокристалл диаметри, h^{**}– нанокристалл марказидан сиртгача бўлган масофа.

Тадқиқот натижалари шуни кўрсатдики, $MeSi_2$ нинг наноўлчамли фазасини олишнинг самарали режимлари куйидагича: энергия интервали 1 дан 40 кэВ гача; ионлар дозаси $D\sim10^{14}$ дан 10^{15} см⁻² гача, кўшни чукурликларда фазалар яратиш учун энергия фарқи камида 12–15 эВ бўлиши керак.

Икки қатламли нанотизим олиш холатида эса имплантация тўйиниш дозасида амалга оширилди (D=D_H≥6·10¹⁶ см⁻²): аввал катта энергия, кейин кичик энегрия билан. Ион имплантациянинг ҳар бир циклидан кейин керакли температурада қиздириш ўтказилди: 30–40 дақиқа давомида T≈850–900 К температурада ҳамда қисқа муддатли T=1100 K да. Si га 25 ва 1 кэВ энегияларда Co⁺ ионларини имплантация қилиш ва кейинги қиздиришлар усули билан олинган нанотузилмада Co атомлари концентрациясининг Si да чуқурлиги бўйича тақсимотининг ўзгариши шуни кўрсатдики, юзада ва 20–30 нм чуқурликда Co нинг концентрацияси ~30–40 ат.% ни ташкил қилади ва бу қатламларда CoSi₂ бирикмаси ҳосил бўлади (8-расм). CoSi₂ қатламлари орасида 5–7 нм, Si қатламлари вужудга келади. РЭМ ва КЭЭД тасвирлари таҳлилларига кўра CoSi₂/Si/Si/CoSi₂ тизими эпитаксиал шаклланган юзаси юқори силлиқликка эга бўлади (9-расм).

5.0kV 10.4mm ×100k SE(M)

8-расм. E₀=25 кэВ ва 1 кэВ энергияларда D=10¹⁷ см⁻² дозада Со⁺ ионлари имплантация қилинган Si да Со атомлари концентрациясининг чуқурлиги бўйича тақсимоти

9-расм. CoSi₂–Si–CoSi₂–Si тизими сиртининг РЭМ ва КЭЭД тасвирлари

Тадқиқот натижаларига кўра икки қатламли тизим олишда ионларнинг катта ва кичик энергиялари орасидаги фарқ 20 кэВ дан кам бўлмаслиги керак. Энергия фарқи ўсиши билан CoSi₂ қатламлари орасида шаклланадиган тоза Si қатлами қалинлиги ҳам ўсиб боради. Аммо 40 кэВ энергиядан катта энергияларда бир жинсли CoSi₂ қатламини олиш имконияти жуда кам.

Экспериментал натижалардан кўринадики, Si нинг юза ости соҳасида маълум бир энергияда ($E_0 = const$) олинган CoSi₂ нинг қатлами ~ 10÷15 нм ни, юзадаги қатлами эса 3÷5 нм ташкил қилади. Кўп ҳолларда CoSi₂ нинг нисбатан қалинроқ қатламларини ҳосил қилиш талаб қилинади. Бунинг учун биз Co⁺ ионларининг энергиясини секин-аста камайтириб киритиш усулини қўлладик. Мисол сифатида 10-расмда Co⁺ ионларини Si га кетма-кет 25 кэВ ва 18 кэВ энергияларда D=8·10¹⁶ дозада киритиб, кейин 1000 К қиздириб ҳосил қилинган Si-CoSi₂-Si системасининг схематик кесими келтирилган. Расмдан кўринадики, CoSi₂ нинг Si даги қалинлиги 20-25 нм, унинг юзасида

Si нинг қалинлиги 10-15 нм ни ташкил қилади. Со⁺ ионларининг энергиясини қуйидаги кетма-кетликда камайтириб 30, 25, 18, 12, 7, 3 ва 1 кэВ CoSi₂/Si(111) нинг 35÷40 нм қалинликдаги бир жинсли эпитаксиал плёнкасини ҳосил қилдик.

Тадқиқотнинг кейинги босқичи SiO₂/Si/CoSi₂/Si(111) гетеротузилма қатламини олишга қаратилди. Бунинг учун дастлаб Si(111) юкори $D=10^{17}$ см⁻² дозада Co^+ ионлари билан энергияларда (Е₀=25-30 кэВ) ва имплантацияланди ва кейин Т=1000 К гача 30-40 дакика давомида О₂⁺ ионлари билан кичик энергияларда қиздирилди. Кейин шу намуна $(E_0=1-5 \text{ кэВ})$ ва D=8 $\cdot 10^{16}$ см⁻² дозада бомбардимон килинди. T=800-850 К температурада киздирилгач. ўтиш катламларига эга бўлган SiO₂/Si/CoSi₂/Si(111) туридаги тизим хосил бўлди. Co⁺ ионларини $E_0 = 25$ кэВ ва O_2^+ ни $E_0 = 4$ кэВ да киритиб ва кетма-кет киздириш усули билан олинган SiO₂/Si/CoSi₂/Si(111) тизимида ички CoSi₂ қатлами қалинлиги 12÷15 нм ни, юзасидаги SiO₂ катлами 4÷4,5 нм ни ташкил килади. (11-расм).

10-расм. Si га D = 8·10¹⁶см⁻²дозада босқичма-босқич 25 кэВ ва 18 кэВ энергияларда Co⁺ ионларини имплантация қилиб, кейин T=1000 К да қиздириб хосил қилинган Si/CoSi₂/Si тизимининг схематик кесими имплантацияланган

11-расм. SiO₂/Si/CoSi₂/Si(111) тизимида Si, О ва Со атомларининг чукурлик бўйича таксимоти

Si ни Na, P ва B атомлари билан орқа томондан (молибден таглиги томондан) легирлаш усули таклиф этилди. Бунинг учун Мо дастлаб Na⁺ (P⁺, B⁺) ионлари билан оптимал энергияда (E₀=4–5 кэB) ва дозада (D≈10¹⁷ см⁻²) легирланди. T≈900 К температурада қиздиришдан кейин d≈0–400 Å оралиқда кремнийдаги Na концентрацияси ўзгармайди ва 0,1–0,2 ат.% ни, T=1000 К температурада ва d=0–500Å интервалда ~0,05 ат.% ни ташкил этади. Бунда Si ўтказувчанлиги *n* типдан *p* типга ўтади. Р⁺ ионлари билан легирланган Si да ўтказувчанлик тури ўзгармайди, лекин солиштирма қаршилик кескин камаяди.

Хар доим конденсат ва таглик материали ўртасида кучли боғланиш хосил бўлишига тўскинлик килувчи металл ва яримўтказгичли тагликлар сиртида оксиднинг юпка пленкалари мавжуд бўлади. Ионли

17

барқарорлаштирилган ўтқазиш жараёнида ионлар зарбаси хисобига оксидли пленканинг бузилиши содир бўлади, бузилиш даражаси ортган сари тагликка чанглантирилаётган пленканинг адгезияси ошиб боради.

Агар конденсирланган пленка қалинлиги $x \leq \overline{L}_{\kappa} - \ell$, (L_k – ўтказилган пленка қалинлиги +*l*, *l* – пленка оксиди қалинлиги) бўлса, унда ионлар таъсиридаги пленка бузилиш даражаси тезлигини аниқлаш қуйидаги формула орқали ифодаланади:

$$\frac{dN}{dt} = -\zeta \cdot J \cdot N \tag{2}$$

Бу ерда $J = \alpha_u J_n$ – ионлар оқими; N - t вақт моментидаги Si–O оксид пленкадаги бузилмай қолган боғланишлар сони; $\zeta - Si$ –O боғланишнинг узилиш кўндаланг кесими.

Оксид пленканинг бузилиш даражаси $\ell \ll \overline{L}$ бўлганда буғ оқимидаги ионли ташкил этувчиси қуйидаги формула орқали ифодаланади:

$$\chi_R = \frac{N_0 - N(\tau)}{N_0} = 1 - \exp\{-\zeta \cdot J \cdot \tau\}$$
(3)

Бу ерда N_0 – чангланишгача бўлган холатдаги пленкадаги Si–O боғланишлар сони; N(τ) – τ вақт моментида бузилмасдан сақланган Si–O боғлиниш сони. $\tau = \tau(L)$ катталик қуйидаги ифода орқали топилади:

$$\tau(x) = \frac{n_1}{J} \left\{ \frac{ax + \ln\left[1 - \frac{\alpha R}{\beta}(1 - e^{-\alpha x})\right]}{a(\beta - \alpha R)} \right\}$$
(4)

Пленка оксидининг тўлиқ бузилиш даражаси қуйидагига тенг:

$$\chi_R = 1 - N(\tau)/N_0 \tag{5}$$

Натижалар таҳлили шуни кўрсатдики, буғ оқимида бир қанча фоиз тезлашган ионлар мавжудлиги тўлиқ емирилишига оксид пленкаси ва ўтиш қатламининг ҳосил бўлишига олиб келади. Бунда ўтиш қатламининг ҳисобланган қиймати тажриба натижаларига мос келади.

Электрон нурли плазмали пуркаш (ЭНПП) усулида кремнийли тагликда алюминий пленкасининг адгезияси ошиши ва контакт электр қаршилиги кескин камайиши юқорида айтилганлар орқали тушунтирилади, олинган натижалар термик пуркаш (ТП) усулида олинган натижаларга таққосланган.

ХУЛОСА

Эпитаксия ва ион имплантация усуллари билан Мо ва Si монокристаллари асосида наноўлчамли тузилмалар ва кўп қатламли тизимлар олиш, уларнинг шаклланиш қонунларини ўрганиш, физик механизмларини тадқиқ қилиш натижасида қуйидаги ҳулосалар қилинди:.

1. Nb⁺ ионларини Мо га имплантация қилинганда ва кейинги қиздиришда панжара тугунларидаги айрим Мо атомлари ўрнини Nb атомлари эгаллаши туфайли Nb+Mo интерметаллид боғланишнинг нанокристалл фазалари ҳосил бўлиши, Ba⁺ ионлари Мо га киритилганда интерметаллид боғланиш ҳосил бўлмаслиги аниқланган.

2. Nb+Mo интерметаллид ҳосил бўлиш жараёнида Mo нинг юза ости қатламлари атом зичлиги амалда ўзгармайди, юзанинг чиқиш иши еφ эса бироз (~0,1 эВ) камайиши ҳисобига Nb+Mo нанофазалари ва қатламларининг мавжудлиги молибденнинг δ_m ва Y сини сезиларли ўзгартирмаслигини таъкидлаш мумкин.

3. Кристаллдан ўтаётган ёруғлик нурлари интенсивлиги унинг энергиясига (тўлқин узунлигига) боғлиқлигини ўрганиш яримўтказгичлар ва диэлектриклар юзасининг янги нанофазалар билан қопланиш даражасини баҳолаш ва текширилаётган материалнинг ҳар ҳил чуқурликларида жойлашган наноўлчамли тузилмаларнинг тақиқланган зонаси кенглигини аниқлашнинг самарали усули эканлиги аниқланган.

4. Ме⁺ ионларини имплантация қилиш усулида Si нинг юзасида ва юза ости қатламларида MeSi₂ нанофазалари ҳосил бўлиши, CoSi₂/Si тузилмаси чегарасида эса қалинлиги 100–120 Å бўлган ўтиш қатлами шаклланиши, CoSi₂/Si гетеротузилма чегарасида зона чеккаларида рўй берадиган ΔE_c ва ΔE_v узилишларнинг қийматлари аниқланган.

5. Ионларнинг дозаси ўгармас бўлганда Si нинг ҳар ҳил чуқурликларида ҳосил қилинган MeSi₂ нанокристалларининг ҳажмлари бир ҳил бўлиши, Si нинг юза остида ҳар ҳил чуқурликларда жойлашган (1–2)·10⁻¹⁸ см³ ўлчамли CoSi₂ HK фазалари тақиқланган соҳаси кенглиги 0,8–0,9 эВ атрофида бўлиши кўрсатилган.

6. Кичик энергияли O_2^+ ионларини катта доза (D≥6·10¹⁶ см⁻²) билан Si га киритиш ва кейинчалик қиздириш усули билан SiO₂ нинг яхлит бир жинсли пленкаларини ҳосил қилиш мумкинлиги, ионлар энергиясини 1 кэВ дан 5 кэВ гача ўзгартириб, қалинлиги d=25–100 Å оралиқда бўлган SiO₂ пленкалари олинган. SiO₂/Si пленкасининг тақиқланган соҳа кенглиги 8,5–9 эВ. D=8·10¹⁵–2·10¹⁶ см⁻² дозаларда олинган CoSi₂ ва SiO₂ пленкаларда бир хил тартибда жойлашган ва зичлиги 10¹⁰–10¹¹ см⁻² бўлган кремнийнинг наноўлчамли кристаллари мавжудлиги кўрсатилган.

7. Электрон нурли плазмали пуркаш таркибида тезлаштирилган Al⁺ ионлари мавжудлиги (~2–3%) Si–O боғланишнинг узилиши ва кислороднинг

чиқиб кетишига, Al нинг сиртга адгезиясининг яхшиланишига ҳамда контакт электр қаршилиги 8–10 марта камайишига олиб келиши кузатилган.

8. Ион имплантация усули билан MeSi₂/Si/MeSi₂/Si туридаги HK ни катламли нанотизим хосил килиб, Si юзасида ва хар хил чукурликда MeSi₂ нанокатламларини хосил киладиган ион имплантация ва киздиришнинг оптимал режимлари аникланган.

9. Si нинг орқа томонидан тагликка олдиндан керакли аралашмани ион имплантация усулида киритишга асосланган легирлаш усули тавсия қилинган. Жумладан, Si/Mo тизимини фосфор билан легирлашда энг оптимал шароитлар: E₀=4–5 кэB, D=10¹⁷ см⁻², қиздириш температураси T=1000 К.

НАУЧНЫЙ СОВЕТ DSc.27.06.2017. FM./T.34.01 ПО ПРИСУЖДЕНИЮ УЧЕНОЙ СТЕПЕНИ ПРИ ФИЗИКО-ТЕХНИЧЕСКОМ ИНСТИТУТЕ, ИНСТИТУТЕ ИОННО-ПЛАЗМЕННЫХ И ЛАЗЕРНЫХ ТЕХНОЛОГИЙ, САМАРКАНДСКОМ <u>ГОСУДАРСТВЕННОМ УНИВЕРСИТЕТЕ</u> ТАШКЕНТСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

ЭРГАШОВ ЁКУБ СУВОНОВИЧ

ЗАКОНОМЕРНОСТИ ФОРМИРОВАНИЯ И ЭЛЕКТРОННЫЕ СВОЙСТВА НАНОРАЗМЕРНЫХ СТРУКТУР, СОЗДАННЫХ НА ПОВЕРХНОСТИ И В ПРИПОВЕРХНОСТНОЙ ОБЛАСТИ Мо И Si МЕТОДОМ ИОННОЙ БОМБАРДИРОВКИ

01.04.04 – Физическая электроника

АВТОРЕФЕРАТ ДИССЕРТАЦИИ ДОКТОРА ФИЛОСОФИИ (PhD) ФИЗИКО-МАТЕМАТИЧЕСКИХ НАУК

Ташкент-2017

Тема диссертации доктора философии (PhD) по физико-математическим наукам зарегистрирована в Высшей аттестационной комиссии при Кабинете Министров Республики Узбекистан за № В2017.1.PhD/FM24.

Диссертация выполнена в Ташкентском государственном техническом университете.

Автореферат диссертации на двух языках (узбекский, русский, английский (резюме)) размещен на веб-странице по адресу fti-kengash.uz и на Информационно-образовательном портале «ZiyoNet» по адресу www.ziyonet.uz.

Научный руководитель:	Умирзаков Болтаходжа Ерматович, доктор физико-математических наук, профессор
Официальные оппоненты:	Эгамбердиев Бахром Эгамбердиевич доктор физико-математических наук, профессор
	Турсунметов Комил Ахмедович доктор физико-математических наук, профессор

Ведущая организация:

Ферганский политехнический институт

Защита диссертации состоится «__> ____ 2017 года в _____ часов на заседании Научного совета DSc.27.06.2017. FM./T.34.01 при Физико-техническом институте. Адрес: 100084, г. Ташкент, ул. Бодомзор йули, дом 26. Административное здание Физико-технического института, зал конференций. Тел./Факс: (+99871) 235–30–41; e-mail: lutp@uzsci.net.

С диссертацией можно ознакомиться в Информационно-ресурсном центре Физикотехнического института (зарегистрирована за № ___), по адресу: 100084, г. Ташкент, ул. Бодомзор йули, дом 2б. Тел./Факс: (+99871) 235–30–41.

Автореферат диссертации разослан «__» ____ 2017 г. (протокол рассылки № ____ от «__» ____ 2017 г.)

С.Л. Лутпуллаев, председатель Научного совета по присуждению ученых степеней, д. ф.-м. н., профессор

А.В. Каримов, ученый секретарь Научного совета по присуждению ученых степеней, д. ф.-м. н., профессор

С.А. Бахрамов,

председатель научного семинара при Научном совете по присуждению ученых степеней, д. ф.-м. н., профессор

ВВЕДЕНИЕ (аннотация диссертации доктора философии (PhD))

востребованность Актуальность И темы диссертации. Ha сегодняшний день в мире в быстроразвивающейся области физической электроники одним из перспективных направлений является исследования при формировании наноматериалов, зависимости магнитных, электрических, оптических и других свойств от размеров. В этом плане исследование размерных эффектов зависимых от природы материалов и проявление полупроводниковых свойств наноразмерных В металлах, a В полупроводниках изменение ширины их запрещенной зоны с уменьшением их размеров является одним из основных задач.

В годы независимости в нашей республике особое внимание обращено развитию области физической электроники включающей физические явления и процессы, имеющие фундаментальное значение при создании различных приборов. В этом аспекте укрепление обладающей типов новыми качественными свойствами материальной базы, а также улучшение качества путем введения в кристаллы дополнительных элементов в свете современных требований, совершенствование их технологии достигнуты существенные Ha основе Стратегии действий дальнейшего результаты. развития Республики Узбекистан укрепление элементной базы производимых в области нано- и микроэлектроники физической электроники, расширение функциональных свойств обеспечивающих их широкое применение имеет важное значение.

Ha свойств сегодня мире исследование электронных И В закономерностей формирования наноразмерных структур открывает возможность повышения адгезии металлов, уменьшению электрического сопротивления контакта к структурам на основе кремния, которые способствуют повышению их стабильной работы. В этом аспекте целевые научные исследования, в том числе реализация в нижеприведенных направлениях: проведение имплантации ионов металлов при различных энергиях и дозах; проведение бомбардировки ионами металлов и изучение закономерностей И механизмов образования наноразмерных фаз В путем полупроводниках последовательного термического отжига; исследование влияния распыления заряженных металлов на формирование тонких оксидных пленок Si. В этом направлении проводимые научные исследования указывают на актуальность данной диертации.

Данное диссертационное исследование в определенной степени служит выполнению задач, предусмотренных в Постановлении первого Президента Респуб-лики Узбекистан №ПП–1442 «О приоритетных направлениях развития индустрии Республики Узбекистан на 2011-2015 гг.» от 15 декабря 2015 года и №-ПП-2789 «О мерах по дальнейшему совершенствованию деятельности Академии наук, организаций, управления и финансирования научно-исследовательской деятельности» от 17 февраля 2017 года а также в других нормативно-правовых документах, принятых в данной сфере. Соответствие исследования с приоритетными направлениями развития науки и технологий в республики. Диссертация выполнена в рамках приоритетных направлений развития науки и технологий Республики Узбекистан – III. «Энергетика, энергоресурс сбережение, транспорт, машинои приборостроение; развитие современной электроники, микроэлектроники, фотоники, электронного приборостроения».

Степень изученности проблемы. До настоящего времени исследования ученых и разработчиков направлены на создание и изучению физикосвойтв наноразмерных химических структур, формируемых В полупроводниковой и металлической матрице, ученые из Китая и США W.S. Cho, J.Y. Kim, J.M. Gallego, R. Miranda исследовали процесс роста сверхтонких (1-2 монослоев) пленок Со на поверхности Si(111), а Bei Li, Jianlin Liu, U. Starke, W. Weiss, М.В. Гомоюновы обнаружили образование химической связи между атомами Со и Si при твердофазном осаждении Со на Si с образованием нанослоев CoSi₂ и возможность использования этих структур при создании различных приборных композиций.

Учеными Узбекистана в том числе, Б.Е.Умирзаковым и с его сотрудниками впервые методом низкоэнергетической ионной бомбардировки получены одно и многокомпонентные наноразмерные кристаллические фазы и пленки в поверхностной области Pd, Si, GaAs и CaF₂.

Связь диссертационного исследования С планами научноисследовательских работ высшего образовательного учреждения, где выполнена диссертационная работа. Работа выполнена в Ташкентском государственном техническом университете в рамках Государственной программы научно-исследовательских работ Республики Узбекистан и проектов № К-4-001 «Разработка технологии получения многослойных наноразмерных МДП и ПДП гетероструктур на основе кремния» (2012–2014); № Ф2-41 «Теоретические и экспериментальные исследования процессов распыления, внедрения атомов, образования наноразмерных структур и напряженных слоев при имплантации ионов в материалы различной природы» (2012–2016); № А-4-7 «Разработка технологии синтеза гетероэпитаксиальных наноразмерных структур в приповерхностной области монокристаллических пленок кремния и арсенида галлия для приборов микро- и оптоэлектроники, в том числе солнечной энергетики» (2015–2017).

Целью исследования является получение наноразмерных структур и многослойных систем на основе монокристаллов Мо и Si методами эпитаксии и ионной имплантации, изучение закономерностей и выяснение физических механизмов их формирования.

В соответствии с поставленной целью необходимо было решить следующие задачи:

изучить состав, электронные свойства, микроструктуру и морфологию поверхности Mo(111), имплантированного ионами Ba⁺ и Nb⁺ с разными энергиями (E₀=0,5-5 кэB) и дозами (D=10¹⁴-10¹⁷ см⁻²);

оценить влияние образования наноразмерных фаз на эмиссионные свойства молибдена;

24

изучить закономерности и основные механизмы образования наноразмерных фаз MeSi₂ в приповерхностной областью Si (111) при бомбардировке ионами Na⁺ и Co⁺ в сочетании с отжигом; разработать методики определения степени покрытия, размеры и ширину запрещенной зоны нанокристаллических фаз MeSi₂, сформированных в различных глубинах приповерхностного слоя;

изучить закономерности роста нанопленок SiO_2 на поверхности Si при бомбардировке ионами O_2^+ ; определить параметры энергетических зон нанопленок SiO_2 различной толщины с использованием методов спектроскопия упруго отраженных электронов (СУОЭ), ультрафиолетовой электронной спектроскопии (УФЭС) и прохождения света через пленки;

изучить влияние на формирование переходящего слоя в Si, покрытого тонким слоем окисла, при напылении частично заряженного металла;

разработать и усовершенствовать известные методики получения двухслойной системы типа MeSi₂/Si/MeSi₂/Si, основанные на имплантации ионов Me⁺ (Me-Na и Co) в Si с различными фиксированными энергиями с последующим отжигом; построить зонно-энергетическую диаграмму двухслойной системы;

провести легирование Si тыльной С стороны изучить И концентрационные профили распределения атомов легирующего элемента на кремний-подложки для границе оптимальных режимов однородного легирования Si.

Объектами исследования являлись монокристаллические образцы Мо и Si имплантированных ионами в широкой области энергии (0,2 - 40 кэB) и дозы $(D=10^{14}-10^{17} \text{ см}^{-2})$.

Предметом исследования являются закономерности и физические механизмы формирования нанокристаллов и нанопленок на поверхности и в приповерхностных слоях металлов и полупроводников.

Методы исследований. Оже–электронная спектроскопия (ОЭС), дифракция быстрых электронов (ДБЭ), растровая электронная микроскопия (РЭМ), УФЭС, СУОЭ, спектроскопия характеристических потерь энергии электронов (СХПЭЭ), атомно-силовая микроскопия (АСМ) а также спектроскопия проходящего света через образец.

Научная новизна исследования состоит в следующем:

Выявлены физические механизмы образования интерметаллических соединений типа Nb+Mo в приповерхностном слое Mo при имплантации ионов Nb⁺ в сочетании с отжигом и экспериментально доказано, что образование интерметаллида приводит к формированию ниже уровня Ферми Mo электронной подзоны 4d электронов Nb, что приводит к изменению плотности состояния валентных электронов Mo.

Экспериментально установлено, что при имплантации ионов Ba⁺ в Мо не образуется интерметаллическое соединение, однако вследствие уменьшения работы выхода и увеличения атомной плотности приповерхностного слоя эмиссионная эффективность вторичных и фотоэлектронов увеличивается в 2 и более раза.

установлены основные закономерности формирования наноразмерных фаз и слоев MeSi₂ в приповерхностной области Si в процессе ионной имплантации и последующего отжига, а также разработаны методики оценки их размеров и определения параметров энергетических зон, основанные на изучении изменения интенсивности проходящего света;

разработана технология получении однородных поликристаллических нанопленок SiO₂ различной толщины (d \approx 20-100Å) и с шириной запрещенной зоны ~8,5÷9 эВ методом имплантации ионов O₂⁺ на поверхности Si;

обосновано, что наличие в потоке напыляемых металлических веществ (Al) нескольких процентов ускоренных ионов ($E_0=1-2$ кэB) приводит к полному разрушению тонкой окисной пленки на поверхности Si и созданию переходного слоя приводящего повышению адгезии металла на кремниевых подложках и резкому снижению контактного электросопротивления;

разработана методика получения наноразмерных двухслойных систем типа MeSi₂/Si/MeSi₂/Si (Me-Co, Na), интегральная толщина которых не превышает 40÷50 нм, толщина поверхностной пленки CoSi₂ составляет 3÷5 нм, толщина приповерхностной пленки – 10÷12 нм, а толщина пленки Si между этими слоями – 10÷20 нм.

Практические результаты исследования заключаются в следующем:

разработаны методики получения наноразмерных фаз MeSi₂ в различных глубинах приповерхностной области Si и двухслойной системы типа MeSi₂/Si/MeSi₂/Si;

предложена методика легирования Si с тыльной стороны. Даны научно обоснованные рекомендации по применению полученных результатов при разработке приборов микро-, нано- и оптоэлектроники.

Достоверность результатов исследований обеспечивается необходимой статистикой экспериментов, использованием комплекса независимых взаимодополняющих современных методов измерения и обработки данных, а также соответствием полученных результатов по чистым образцам Мо и Si с данными других авторов.

Научная и практическая значимость результатов исследования.

Научная значимость: полученные результаты исследований позволяют объяснить механизмы формирования и электронные свойства наноразмерных структур созданных на поверхности и в приповерхностном слое материалов различной природы, которые являются фундаментальной базой для развития теории образования гетероэпитаксиальных наноразмерных структур и теории движения заряженных частиц в этих структурах.

Практическая значимость: разработанные методики однородного легирования Si с тыльной стороны, получение регулярно расположенных наноразмерных фаз и нанопленок SiO₂ на поверхности Si, создание

двухслойной гетероструктурной системы MeSi₂/Si/MeSi₂/Si весьма важны при разработке различных МОП, МДП, ПДП-структур, контактных и барьерных слоев для приборов твердотельной электроники, в том числе солнечной энергетики.

Внедрение результатов исследования. На основе результатов исследовния образованияна поверхности Мо и Si и в поверхностной области наноразмерных фаз:

полученные результаты по образованию наноразмерных фаз на поверхности и в приповерхностной области Мо и Si использованы в научных проектах ОТ-АЗ-56 «Разработка неохлаждаемых высокоэффективных приемников теплового излучения и термоэлектрических преобразователей инфракрасного излучения на основе пленок высшего силицида марганца» и Ф-2-31 «Исследование структуры и физических свойств наноразмерных пленок силицидов металлов и разработка термочувствительных структур» (Справка ФТА-0211/360 Агентство Науки и технологии Республики Узбекистан от 2017 года 19 июля);

изучены основные закономерности формирования наноразмерных фаз и слоев MeSi₂ в приповерхностной области и на их основе разработано утройство оценки размеров и определения параметров энергетических зон (катлог VIII Республиканской ярмарки инновационных идей, технологий и проектов «Электронная установка для измерения и стабилизации температуры приборов электронной техники»). Разработанное устройство позволило съэкономить энергию.

Апробация результатов исследования. Результаты данного исследования были представлены и обсуждены на 19 международных и 3 республиканских научно-практических конференциях.

Публикации результатов исследования. По диссертации теме опубликовано 34 научных трудов, из них 10 статей журналах, В Республики рекомендованных Высшей аттестационной комиссией Узбекистан для публикации основных научных результатов докторских диссертаций.

Структура и объём диссертации. Диссертация состоит из введения, четырёх глав, заключения, списка использованной литературы. Объем диссертации включает 135 страниц.

ОСНОВНОЕ СОДЕРЖАНИЕ ДИССЕРТАЦИИ

Во введении обоснованы актуальность и востребованность темы диссертации, определена связь исследований с основными приоритетными направлениями развитии науки и технологий в республике, приведены обзор научных исследований по теме диссертации, степень изученности проблемы, сформулированы цели и задачи, определены объекты, предметы и методы исследования, изложена научная новизна исследования, обоснована достоверность полученных результатов, раскрыта их теоретическая и практическая значимость, приведены краткие сведения о внедрении

результатов и апробации работы, а также об объеме и структуре диссертации.

В первой главе «Состояние проблемы получения и изучения физических свойств перспективных наноразмерных структур на основе металлов и полупроводников» анализируются оригинальные данные исследований посвященных созданию и изучению физико-химических свойств многослойных наноразмерных гетероэпитаксиальных пленок и упорядоченных наноразмерных структур, созданных на основе Si и Mo. Особое внимание уделяется структурам, полученным с использованием методов ионной бомбардировки и выявлению механизмов их образования. Показано, что изменяя состав, размеры и формы квантовых точек можно контролируемо регулировать физические, в особенности электронные свойства исследуемых образцов и структур.

Однако, до настоящего времени отсутствуют достоверные сведения о результатах систематических исследований по созданию нанообъектов с контролируемыми свойствами на поверхности материалов различной Практически природы. не проводились исследования ПО созданию наноразмерных двухслойных силицидов. Отсутствуют, сведения 0 механизмах формирования наноразмерных фаз в различных глубинах основе полупроводников. На анализа имеющихся теоретических И экспериментальных данных выявлены основные проблемы современной физической электроники, связанные с получением и изучением свойств наноразмерных структур, что послужило основой формулировки цели и задачи данной диссертационной работы.

Вторая глава «Основные принципы базовой установки по получению свойств материалов изучении физических C наноразмерными И экспериментальных структурами» посвящена описанию установок получения и исследования физических свойств материалов и пленок с наноразмерными структурами. В качестве объектов исследования выбраны монокристаллические образцы Мо и Si. Ионная бомбардировка, отжиг и основные исследования проводились в универсальной сверхвысоковакуумной установке. Энергия ионов металлов варьировалась в пределах E₀ от 0,5 до 40 эВ, а Ar^+ и O_2^+ – в пределах $E_0=0,5-5$ кэВ. Элементный И химический состав образцов исследовались методом ОЭС, параметры энергетических зон и плотности состояния валентных электронов – методами УФЭС, СУОЭ и измерения интенсивности проходящего света.

Для получения информации о микрорельефе поверхности и параметрах решетки, использованы стандартные установки растровый электронный микроскоп (РЭМ) «JEOL», дифрактометр быстрых электронов (ДБЭ) «ЭМР – 102», атомно-силовой микроскоп XIA-200 и спектрофотометр UV-1280.

Третья глава посвящена изучению состава и электронных свойств наноразмерных структур и пленок, созданных на поверхности молибдена и кремния. Полученные результаты показывают, что при имплантации ионов Nb⁺ в Мо с невысокой дозой (D $\leq 10^{15}$ см⁻²) на поверхности и вблизи неё образуются нанокластерные фазы интерметаллида типа Nb+Mo. При этом в спектре фотоэлектронов ниже уровня Ферми появляются дополнительные максимумы при энергиях 0,5 эВ и 4,3 эВ. Эти уровни создают свои энергетические подзоны, связанные с 4d-электронами ниобия, которые расположены в запрещенной зоне молибдена в направлении симметрии ГР.

При высоких дозах ионов Nb⁺ (D \approx D_{нас} \approx 8·10¹⁶ см⁻²) на поверхности Мо образуется тонкий слой интереталлида Mo+Nb толщиной ~30-40 Å. При этом работа выхода и эмиссионные свойства Мо заметно не изменяются. На рис.1 приведены фотоэлектронные спектры полученные после прогрева при разных температурах Mo (111), имплантированного ионами Ba⁺ с E₀ = 1 кэВ при дозе 6·10¹⁶ см⁻² (доза насыщения). Прогрев при каждой Т проводился в течение 30 мин. Видно, что после ионной имплантации площадь под кривой

1 – Мо (111), 2 – Мо (111) имплантированный ионами $Ba^+ c E_0 = 1 ext{ куB} ext{ и D} = 6 \cdot 10^{16} ext{ cm}^{-2}$, 3 – после прогрева при T = 1000 К ионноимплантированного Мо. Рис. 1. Фотоэлектронные спектры полученные при hy = 10 эВ.

энергетического распределения (КЭР), то есть квантовый выход фотоэлектронов увеличивается почти в два раза (кривая 2), ширина спектра ΔE увеличивается на 1.5-2 эВ, резко уменьшаются интенсивности пиков Мо и появляются новые пики, характерные для Ва. Результаты ОЭС показали, что после ионной имплантации, при концентрация Ва на поверхности приповерх-И ностном слое до глубины 40-50 Å составляет ~45-50 ат.%, но не образуется химическая связь между атомами Мо и Ва. Эта связь не образовалась и

при прогреве до Т~1300 К, соответствующей полному испарению атомов Ва.

Можно полагать, что при этом в приповерхностном слое Мо формируются тонкие пленки с толщиной $\theta = 40-50$ Å, состоящие из механической смеси Мо+Ва. Положения пиков в спектре фотоэлектронов системы [Ba+Mo] могут несколько (на 0.1–0.2 эВ) отличаться от аналогичных пиков для «чистого» Мо и Ва, что, вероятно, связано с некоторым перераспределением электронов валентной зоны вследствии деформации решетки Мо внедренными атомами Ва и разупорядочением приповерхностного слоя.

В таблице 3.1 приведены основные эмиссионные свойства чистого и ионно-легированного Мо (111). Из таблицы видно, что после имплантации ионов Ва квантовый выход фотоэлектронов Мо при hv = 5.5 эВ увеличивается в ~ 8 раз, а после прогрева при оптимальной температуре в 6 раз, а значение σ_m на 1.5÷2 раза. Имплантация ионов Nb приводит к заметному (до 1.2÷1.5 раза) уменьшению эмиссионной эффективности Мо, что связано с адсорбцией углерода. После прогрева при 1400 К наблюдается некоторое уменьшение еф (на ~ 0.1эВ) и увеличение (на 5÷6 %) σ_m и Y.

	1
Габлица	
таолица	÷.

	Mo(111)	$Nb^+ \rightarrow M$	Io, $E_0 = 3$	$Ba^+ \rightarrow Mo, E_0 = 1$		
Параметры		кэВ, D =	$8 \cdot 10^{16} \text{см}^{-2}$	кэB, D = $6 \cdot 10^{16}$ см ⁻²		
		Т = 300 К	T= 1400 K	T = 300 K	Т=1100 К	
еφ, эВ	4,51	4,8	4,4	2,6	2,2	
$Y \cdot 10^{-6} (hv = 5,5 3B)$	6,2	4,1	6,5	50	35	
$\sigma (E_{p}^{*} = 500 \text{ sB})$	1,4	1,2	1,5	2,8	2,1	

Значения еф, Y и σ для Mo (111) и Mo (111) имплантированного ионами Nb⁺ и Ba⁺

*Е_р – энергия первичных электронов.

Исследованы состав, структура и электронные свойства наноразмерных фаз, созданных имплантацией ионов (Co⁺, Na⁺, O₂⁺) и напылением (Cu) на Si, с использованием комплекса методов электронной спектроскопии и микроскопии. Для сравнения в некоторых случаях представлены результаты по формированию наноразмерных фаз на поверхности диэлектриков NaCl и CaF₂. Эти пленки широко используется при получении многослойных гетероструктур, применяемых в различных оптических и электронных устройствах, в солнечных элементах и фоточувствительных приборах.

Впервые методом измерения интенсивности проходящего света определены ширина запрещенной зоны нанокристаллов и нанослоев MeSi₂, полученных на различных глубинах Si. Из рис. 2 видно, что резкое уменьшение интенсивности света в случае «чистого» Si происходит начиная

с $hv \sim 1.0$ эВ, а в случае пленки $CoSi_2 - c$ *hv* ~ 0,5 эВ (кривые 1 и 3, соответственно). Экстраполяция этих кривых оси энергии К фотонов показывает, что значения E_g для пленок Si и CoSi₂ равны ~ 1,1 эВ и 0,6 эВ, соответственно. В случае Si с нанокристаллами CoSi₂ (рис. 2, кривая 2 – резкое уменьшение интенсивности света наблюдается при двух значениях hv равных 0,8 эВ и 1 эВ. Первое уменьшение связано С поглощением света в участках покрытых нанокристаллами CoSi₂, а второе - в участках не покрытых нанокристаллами CoSi₂ (кремния). Таким образом, значения Е_g для

нанокристаллов CoSi₂ с поверхностными диаметрами ~ 25–30 нм составляют ~ 0,85 – 0,9 эВ. Из этого следует, что ширина запрещенной зоны нанокристаллических фаз значительно больше, чем для нанопленок. На основе кривой 2 можно также оценить степень покрытия поверхности Si нанофазами CoSi₂. Её значение при $\theta \le 1$ можно определить по формуле:

$$\theta = \mathbf{1} - \frac{I_{CoSi_2}}{I_{Si}} \tag{1}$$

Как видно из кривой 2 (рис. 2) в случае Si + HK CoSi₂ при $hv \approx 0.9$ эB, соотношение I_{CoSi2}/I_{Si} составляет ~ 0.55, и следовательно значение θ составляет ~ 0.45. Можно полагать, что остальная 0.45 часть поверхности кремния покрыта нанокристаллами CoSi₂, что близко к значению степени покрытия θ , полученного нами методами ОЭС и РЭМ.

Изучены начальная стадия роста (d \approx 0.2 – 5 монослой) пленки Си на поверхности Si и NaCl. Установлено, что при d \leq 1 рост пленки имеет островковый характер, а в интервале d \approx 1 – 5 монослой пленки растет неравномерно. Показано, что нанопленки Cu с толщиной 1–1.5 монослоя обладают свойствами, характерными для узкозонных полупроводников (E_g = 0.5–0.6 эВ).

На рис. 3 приведены спектры ХПЭЭ для NaCl, покрытого атомами Cu c разной толщиной. Видно, что пики плазменных колебаний ($\hbar\omega_s$ и $\hbar\omega_v$) характерные для Cu, появляются, начиная с d~ 1–1.5 монослоя, что указывает на формирование сплошной пленки. Однако положения пиков $\hbar\omega_v$ и $\hbar\omega_s$ немного смещены в сторону больших потерь энергии, и их интенсивности существенно меньше, чем для массивной пленки Cu. Все пики ХПЭЭ, характерные для массивного Cu, устанавливаются при d_{min} \geq 3–4 монослоев.

Изучены особенности формирования нанопленок SiO₂ на поверхности Si при имплантации ионов O_2^+ . Фотоэлектронные спектры Si (111) и нанопленки SiO₂/Si (111) полученные при hv=10,8 и 21,2 эВ обладают явно выраженной тонкой структурой (рис. 4). В случае чистого Si наличие

N(E)

Рис. 3. Спектры ХПЭЭ для NaCl с пленкой Cu

hv= 10,8 эВ (кривая 1) и hv=21,2 эВ (кривая 2,3)

основных максимумов можно объяснить возбуждением электронов из поверхностных состояний, а также из 3р и 3s состояний валентных электронов Si. В случае окиси кремния происходит гибридизация электронных состояний атомов легирующего элемента и подложки, что

приводит к изменению формы и положений пиков возбужденных электронов. На рис. 5 приведены ACM и РЭМ изображения поверхности пленки SiO₂ с толщиной 50 Å, полученные имплантацией ионов O₂⁺ в Si с E₀ = 3 кэB (D = $8 \cdot 10^{16}$ см⁻²) в сочетании с прогревом при T = 1100 K.

Видно, что при этом формировалась сплошная, однородная пленка с практически гладкой поверхностью (неровности меньше, чем 8 – 10 Å). Для пленок SiO₂, полученных другими методами, в частности, методом термического осаждения кислорода в Si неровности поверхности составляют 80 – 100 Å. В случае SiO₂/Si (111), в отличие от силицидов металлов, не наблюдался эпитаксиальный рост и образовалась поликристаллическая структура. По форме ДБЭ – картин (вставка рис. 56) предполагаем, что пленки SiO₂ состоят из отдельных монокристаллических блоков, однако на границах блоков их ориентация не совпадает.

В таблице 2 приведены возможные механизмы, ответственные за формирование пиков в спектре фотоэлектронов, а также зонноэнергетические параметры и параметры кристаллических решеток Si и SiO₂. Видно, что значения ширины запрещенной зоны нанопленок SiO₂ составляет ~ 9 эВ, что характерно для массивных монокристаллов SiO₂.

Таблица 2.

Объекты	Xap	Параметры зон, эВ				Постоян			
исследо-	А	В	С	D	Ev	E _F	Eg	χ	Ная
вания									a, Å
Si	3p +	3р	3s+3p	3p	5,1	4,7	1,1	4	5,43
	ПС								
SiO ₂	2p(O)	2p(O) +	2p(O) +	2p(O) +	9,1	4,5	8,9	0,1-	поли-
	+	3p(Si)	3p(Si)	3s(Si)				0,2	крис-
	3p(Si)								талл

Параметры зон и кристаллической решетки Si и пленки SiO₂

ПС* – поверхностные состояния.

a – АСМ изображения, б – РЭМ картина (на вставке ДБЭ картина) Рис. 5. АСМ и РЭМ картина поверхности пленки SiO₂/Si c d ~ 50 Å.

Установлено, что при дозах D = $8 \cdot 10^{15} - 2 \cdot 10^{16}$ см⁻², немного меньше их чем дозы насыщения, в пленках SiO₂ имеются регулярно расположенные наноучастки Si с плотностью $10^{10} - 10^{11}$ см⁻².

В четвертой главе «Применение ионной имплантации для создания двухслойных гетероэпитаксиальных структур на поверхности и в приповерхностной области Si» изложены результаты экспериментов по созданию наноразмерных фаз MeSi₂ на различных глубинах Si, а также двухслойных эпитаксиальных гетеросистем CoSi₂/Si/CoSi₂/Si, SiO₂/Si/CoSi₂/Si.

Наноразмерные фазы MeSi₂ получены имплантацией ионов Me (Me-Co и Na) в Si с вариацией энергии ионов в пределах от 1,0 до 40 кэВ при невысоких облучения D=5 $\cdot 10^{13} - 5 \cdot 10^{15}$ см⁻² в сочетании с отжигом. На рис. 6 приведены изменения интенсивности оже-пика Co (E = 765 3B) по глубине Si (111), легированного ионами Co⁺ с энергией $E_0 = 15$ кэВ при $D = 10^{15}$ см⁻² до и после прогрева при температуре T≈900 К в течение 30 мин. В обоих случаях максимум распределения атомов Со располагается на глубине 15-16 нм. После прогрева наблюдается увеличение концентрации атомов в области максимума и существенное уменьшение полуширины кривой распределения $I_{Co}(h)$. В этих участках (на глубине \sim 15-16нм) образовались нанокристаллические фазы CoSi₂. Из энергетических соображений можно полагать, что эти фазы в отличие от поверхностных фаз, имеют сферическую форму. Изучение зависимости I_{CoSi2}/I_{Si} от hv показало, что значение E_g «объемных» нанокристаллов CoSi₂ составляет 0,8–0,85эВ, а относительная площадь НК CoSi₂ в этих слоях Si ~ 0,25-0,3 (рис. 7).

I - до прогрева; 2 - после прогрева при T = 900 K.Рис. 6. Профили распределения атомов Со по глубине h Si, имплантированного ионами Со+ с энергией E0 = 15 кэВ при D \approx 1015 см⁻²

Рис. 7. Зависимость интенсивности проходящего света от энергии фотонов для Si с нанокристаллами CoSi₂, сформированных в приповерхностном слое на глубине 15–16 нм

Оптимальные режимы ионной имплантации и отжига для получения НК MeSi₂ в случае двух разных глубинах монокристалла Si(111) представлены в табл. 3.

Видно, что после прогрева Si, имплантированного ионами Co⁺ и Na⁺ с $E_0=30$ кэB, нанокристаллические фазы формировались на глубине 26-30 нм. При D=5·10¹⁴ см⁻² средний диаметр нанокристаллов составляет 5-6 нм, а при D=10¹⁵ см⁻² – 10–12 нм. В случае $E_0=15$ кэB нанокристаллические фазы образовались на глубине 13–15 нм, а диаметры фаз мало отличаются от характерных для $E_0=30$ кэB. Проведенные исследования показали, что оптимальными режимами получения наноразмерных фаз MeSi₂ в различных глубинах Si являются: интервал энергии ионов от 1 до 40 кэB; доза облучающих ионов $D \simeq 10^{14} - 10^{15}$ см⁻², минимальная разность энергии ионов для создания фаз в соседних глубинах 12-15 кэB.

получения двухслойных наносистем В случае имплантация осуществлялась при дозе насыщения (D=D_н ≥ 6·10¹⁶ см⁻²): сначала с высокой энергией, а затем с низкой энергией. После каждого цикла ионной термический имплантации проводился прогрев при оптимальной температуре (Т ≈ 850 – 900 К) в течение 30 – 40 мин. и кратковременный прогрев при Т = 1100 К.

Таблица 3

Ионы	$E_0 = 15$ кэВ				$E_0 = 30$ кэВ				
	D, см ⁻²	Т, К	d, нм	h, нм	D, cm^{-2}	Т, К	d [*] , нм	h ^{**} , нм	
Co ⁺	5×10^{14}	1000	6-8		5×10^{14}	1000	-		
	10^{15}	1000	10-12	15-16	10^{15}	1000	9-10	28-30	
	5×10 ¹⁵	1200	22-25		5×10 ¹⁵	1100	20-25		
Na ⁺	5×10^{14}	1000	5-6		5×10^{14}	1000	-		
	10^{15}	1050	12-14	13-15	10^{15}	1100	10-12	26-28	
	5×10 ¹⁵	1100	24-26		5×10 ¹⁵	1100	-		

Оптимальные режимы ионной имплантации и отжига для получения нанокристаллов (НК) MeSi₂ в различных глубинах Si(111)

 d^* – диаметр нанокристалла, h^{**} – расстояния от поверхности до центра нанокристалла.

Исследование зависимости концентрации Со по глубине Si, полученные имплантацией ионов Со в Si с энергиями 25 и 1 кэВ в сочетании с термическим отжигом показали, что на поверхности и на глубине 20–30 нм концентрация кобальта составляет ~ 30-40 ат.%, т.е. в этих слоях образуются соединения типа CoSi₂ (рис. 8). Между слоями CoSi₂ имеется слой Si толщиной 5–7 нм, а на границах раздела CoSi₂-Si и Si-CoSi₂ имеются переходные слои с толщиной 6–8 нм. Анализ РЭМ изображения и ДБЭ картин показал, что система CoSi₂/Si/Si/CoSi₂ формируется эпитаксиально и имеет зеркально-гладкую поверхность (рис. 9).

Рис. 8. Концентрационные профили распределения Со по глубине для Si, имплантированного ионами Co⁺ с E_0 = 25 кэВ и 1 кэВ при D = 10¹⁷ см⁻².

Рис. 9. РЭМ и ДБЭ картины поверхности системы CoSi₂ – Si – CoSi₂ – Si

Результаты экспериментов показали, что для получения двухслойной системы разность между высокой и низкой энергиями ионов должны быть не менее 20 кэВ. С ростом разности энергии толщина слоев чистого Si, образующихся между нанослоями CoSi₂, увеличивается. Однако при энергиях ионов больше, чем 40 кэВ не удалось получить однородный слой CoSi₂.

Из экспериментальных данных следует, что толщина слоев CoSi₂полученных в приповерхностной области Si при определенной энергии (E₀=const) составляет ~10÷15 нм, а на поверхности 3÷5нм. Во многих случаях возникает необходимость получения относительно «толстых» слоев CoSi₂. Для этого нами использовался способ имплантации Со в Si с постепенным уменшением энергии в необходимом интервале. В качестве примера на рис.10 приведен схематической разрез системы Si/CoSi₂/Si, полученный после прогрева при Т=1000 К кремния, поэтапно имплантированного ионами Co^+ с энергиями 25 кэВ и 18 кэВ при D = $8 \cdot 10^{16}$ см⁻². Видно, что толщина слоя CoSi₂в Si составляет ~20÷25 нм, толщина поверхностной пленки Si -10-12 нм. Уменьшая энергию ионов Со⁺ в следующей последовательности 30, 25, 18, 12, 7, 3 и 1 кэВ нами получена однородная эпитаксиальная нанопленка CoSi₂/Si(111)с толщиной ~35÷40 нм.

Были получены слоистые гетероструктуры типа SiO₂/Si/CoSi₂/Si (111). Для этого в Si (111) сначала имплантировались ионы Co⁺ с высокой энергией (E₀=25–30 кэВ) при D = 10^{17} см⁻² и структуры прогревались при T=1000 K в течение 30–40 мин. Затем этот же образец бомбардировался ионами O₂⁺ с низкой энергией (E₀=1–5 кэВ) при D = $8 \cdot 10^{16}$ см⁻². После прогрева при T=800–850 K образовались система типа SiO₂/Si/CoSi₂/Si (111) с переходными слоями. В случае системы SiO₂/Si/CoSi₂/Si(111) полученная имплантацией ионов Co⁺ с E₀=25 кэВ и O₂⁺ с E₀=4 кэВ, в сочетании с прогревомтолщина внутреннего слоя CoSi₂coставляла 12÷15 нм, а толщина поверхностной пленки SiO₂ - 4÷4,5 нм (рис.11).

Рис. 10. Схематической разрез системы Si/CoSi₂/Si, полученный после прогрева при T=1000 К кремния поэтапно имплантированного ионами Co⁺ с энергиями 25 кэВ и 18 кэВ при D = $8 \cdot 10^{16}$ см⁻².

В работе предложена методика легирования Si атомами Na, P и B с тыльной стороны (со стороны подложки – молибдена). Для этого до напыления кремния Mo предварительно легировался ионами Na⁺ (P⁺, B⁺), с оптимальной энергией ($E_0 = 4 - 5 ext{ кэB}$) и дозой (D $\approx 10^{17} ext{ см}^{-2}$). После прогрева при T ≈ 900 K концентрация Na в интервале d $\approx 50 - 400$ Å практически не меняется и составляет 0,1–0,2 ат.%, а при T = 1000 K – в интервале d = 0 – 500Å составляет $\sim 0,05$ ат.%. При этом тип проводимости Si переходит из п-типа в р-тип. В случае легирования Si атомами P тип проводимости не изменяется, однако удельное сопротивление образцов резко уменьшается.

На поверхности металлических и полупроводниковых подложек присутствуют тонкие окисные пленки, препятствующие образованию прочных связей между конденсатом и материалом подложки. В случае ионно-стимулированного осаждения в результате ионной бомбардировки происходит разрушение окисных пленок, причем с увеличением степени их разрушения резко возрастает адгезия напыляемой пленки к подложке.

Если толщина конденсируемой пленки $x \leq \bar{L}_{\kappa} - \ell$, (L_k – толщина осаждаемый пленки +*l*, *l* – толщина окисной пленки), то скорость разрушения окисной пленки под воздействием ионов определяется уравнением

$$\frac{dN}{dt} = -\zeta \cdot J \cdot N, \tag{2}$$

где $J = \alpha_u J_n$ – поток ионов; N – число оставшихся неразрушенных связей Si-O в окисной пленке в момент времени t; ζ – сечение разрыва связи Si-O.

При $\ell \ll \bar{L}$ степень разрушения окисной пленки за счет ионной составляющей потока пара оценивается величиной

$$\chi_{R} = \frac{N_{0} - N(\tau)}{N_{0}} = 1 - \exp\{-\zeta \cdot J \cdot \tau\},$$
(3)

где N_0 – число связей Si-O в исходной пленке до напыления; $N(\tau)$ – число неразрушенных связей Si-O, сохранившихся к моменту времени τ . Величину $\tau = \tau(\bar{L})$ находим по формуле

$$\tau(x) = \frac{n_1}{J} \left\{ \frac{ax + \ln\left[1 - \frac{aR}{\beta}(1 - e^{-ax})\right]}{a(\beta - aR)} \right\}.$$
 (4)

В целом степень разрушения окисной пленки равна

$$\chi_R = 1 - N(\tau) / N_0.$$
 (5)

Результаты проведенных расчетов показали, что наличие в потоке пара даже нескольких процентов ускоренных ионов приводит почти к полному разрушению окисной пленки и созданию переходного слоя. причем толщина рассчитанная которого согласуется полученной С экспериментально. Все это объясняет повышенную адгезию пленок алюминия на кремневых подложках и резкое снижение контактного электросопротивления при электронно-лучевом плазменном напылении (ЭЛПН) по сравнению с термическим напылением (ТН).

ЗАКЛЮЧЕНИЕ

В результате исследования наноразмерных структур и многослойных систем на основе монокристаллов Мо и Si методами эпитаксии и ионной имплантации, изучению закономерностей и выяснению физических механизмов их формирования сделаны ледующие выводы.

1. Установлено, что при имплантации ионов Nb⁺ в Мо в сочетании с прогревом вследствие частичного замещения в узлах решетки атомов Мо атомами Nb формируются нанокристаллические фазы интерметаллического соединения Nb+Mo, а в случае имплантации ионов Ba⁺ в Мо интерметаллические соединения не образуются.

2. Выявлена неизменность плотности атомов в приповерхностном слое Мо при образовании интерметаллидов Nb+Mo и уменьшение еф поверхности, а также заметное изменение δ_m и Y молибдена из-за наличия наноразмерных фаз и слоев.

3. Показано, что метод изучения зависимости интенсивности проходящего света от его энергии (длины волны) является эффективным для оценки степени покрытия поверхности полупроводников и диэлектриков новыми фазами и определения ширины запрещенной зоны наноразмерных структур, расположенных на различных глубинах исследуемого материала.

4. Методом имплантации ионов Ме в Si получены нанокристаллические фазы $MeSi_2$ и слои на поверхности и в приповерхностном слое Si, оценены значения разрыва краев зон ΔE_c и ΔE_v на границе гетероструктур $CoSi_2/Si$ при переходном слое $MeSi_2/Si$ толщиной 100–120Å.

5. Показно, что объем нанокристаллических фаз MeSi₂, созданных в различных глубинах Si с постоянный дозой имплантированных ионов будет

примерно одинаковым, а ширина запрещенной зоны нанокристаллических фаз $CoSi_2$ с размерами $(1-2) \cdot 10^{-18}$ см³ сформированных в различных глубинах приповерхностной областях Si, находится в пределах 0,8–0,9 эВ.

6. Показана возможность получения сплошных однородных поликристаллических пленок SiO₂ толщиной d = 25 – 100 Å путем варьирования энергией ионов в пределах 1–5 кэВ при низкоэнергетической высокодозной (D $\ge 6 \cdot 10^{16}$ см⁻²) имплантации ионов O_2^+ в Si в сочетании с термическим отжигом. Ширина запрещенной зоны SiO₂/Si составляет 8,5–9 эВ. В пленках SiO₂/Si и CoSi₂/Si, полученных при дозах ионов D = $8 \cdot 10^{15} - 4 \cdot 10^{16}$ см⁻² имеются регулярно расположенные наноучастки Si с плотностью $10^{10} - 10^{11}$ см⁻².

7. Показано, что электронно-лучевое плазменное напыление ускоренных ионов Al⁺ (~2–3%) приводит к разрушению связи Si-O и освобождению кислорода, улучшению адгезии атомов Al в Si и снижению контактного электросопротивления в 8-10 раз.

8. Методом ионной имплантации получены двухслойные наносистемы типа MeSi₂/Si/MeSi₂/Si на поверхности Si и определены оптимальные режимы ионной имплнтации и нагрева обеспечивющие получение нанослоев на различных глубинах MeSi₂.

9. Предложена методика легирования Si со стороны подложки, основанная на предварительном внедрении примесей в подложку ионной бомбардировкой. В частности, в случае легирования системы Si/Mo фосфором, оптимальным являлись энергия ионов E_0 =4-5 кэB, доза облучающих ионов D=10¹⁷ см⁻² и температурный прогрев при T=1000 К.

SCIENTIFIC COUNCIL AWARDING SCIENTIFIC DEGREES DSC.27.06.2017.FM/T.34.01 PHYSICAL-TECHNICAL INSTITUTE, INSTITUTE OF ION-PLASMA AND LASER TECHNOLOGIES, SAMARKAND STATE UNIVERSITY

TASHKENT STATE TECHNICAL UNIVERSITY

ERGASHOV YOKUB SUVONOVICH

FORMATION PATTERNS AND ELECTRONIC PROPERTIES OF NANOSCALE STRUCTURES CREATED ON THE SURFACE AND NEAR-SURFACE REGION OF Mo AND Si BY METHOD OF ION BOMBARDING

01.04.04 - Physical electronics

ABSTRACT OF DISSERTATION OF THE DOCTOR OF PHILOSOPHY (PhD) ON PHYSICAL AND MATHEMATICAL SCIENCES

TASHKENT-2017

The theme of dissertation of doctor of philosophy (PhD) on physical and mathematical sciences was registered at the Supreme Attestation Commission at the Cabinet of Ministers of the Republic of Uzbekistan under number B2017.1. PhD/FM24.

Dissertation has been prepared at physical-technical institute.

The abstract of the dissertation is posted in three languages (uzbek, russian, english (resume)) on the website (fti-kengash.uz) and the "Ziyonet" Information and educational portal (www.ziyonet.uz).

Scientific supervisor:	Umirzakov Baltokhodja Ermatovich Doctor of Physical and Mathematical Sciences, Professor
Official opponents:	Egamberdiev Bakhrom Egamberdievich Doctor of Physical and Mathematical Sciences, Professor
	Tursunmetov Komil Akhmedovich Doctor of Physical and Mathematical Sciences
Leading organization:	Fergana Polytechnic Institute

Defense will take place «_____» ____2017 at _____at the meeting of Scientific Council number DSc.27.06.2017.FM/T.34.01 Physical-technical institute, institute of ion-plasma and laser technologies, Samarkand state university. (Address: 100084, Uzbekistan, Tashkent, 2B Bodomzor yuli street. Phone/fax: (+99871) 235-42-91, e-mail: lutp@uzsci.net.).

Dissertation is possible to review in Information-resource centre at Physical-technical institute (is registered N_{2}) (Address: 100084, Uzbekistan, Tashkent, 2B Bodomzor yuli street. Phone/fax: (+99871) 235-42-91, e-mail: <u>lutp@uzsci.net</u>).

 Abstract of dissertation sent out on «____»
 2017 year

 (Mailing report № _____ on «____»
 2017 year)

S.L. Lutpullayev Chairman of scientific council on award of scientific degrees, D.F.-M.S., professor

A.V. Karimov Scientific secretary of scientific council on award of scientific degrees, D.F.-M.S., professor

S.A. Bakhramov

Chairman of scientific Seminar under Scientific Council on award of scientific degrees, D.F.-M.S., professor The aim of the research work. Obtaining nanoscale structures and multilayer systems based on Mo and Si single crystals by epitaxy and ion implantation, studying regularities and elucidating the physical mechanisms of their formation

The object of the research work. Monocrystalline Mo and Si samples implanted by ions in a wide energy range (0, 2 - 40 keV) and doses $(D = 10^{14} - 10^{17} \text{ cm}^{-2})$.

Scientific novelty of there search work. The physical mechanisms for the formation of intermetallic compounds of the Nb + Mo type in the near-surface Mo layer during the implantation of Nb + ions in combination with annealing have been established and it has been experimentally proved that the formation of an intermetallic compound leads to the formation of the Mo subband of 4d electrons Nb below the Fermi level of Mo, which leads to a change in the density of the valence electron state Mo.

It has been experimentally established that the intermetallic compound is not formed in the implantation of Ba^+ ions in Mo, but as a result of the decrease in the work function and the increase in the atomic density of the near-surface layer, the emission efficiency of secondary and photoelectrons increases 2 or more times.

the main regularities of the formation of nanoscale phases and $MeSi_2$ layers in the near-surface region of Si in the process of ion implantation and subsequent annealing are established, and methods for estimating their dimensions and determining the parameters of the energy bands based on studying the change in the intensity of transmitted light are developed;

The technology of obtaining homogeneous polycrystalline nanofilms of SiO₂ of various thicknesses (d \approx 20-100Å) and with a bandgap width of ~ 8.5 ÷ 9 eV by the implantation of O₂⁺ ions on the Si surface has been developed;

It is justified that the presence of several percents of accelerated ions ($E_0 = 1-2$ keV) in the stream of sputtered metallic substances (Al) leads to the complete destruction of a thin oxide film on the Si surface and to the creation of a transition layer leading to an increase in the adhesion of metal to silicon substrates and a sharp decrease in the contact electrical resistivity;

a method for obtaining nanoscale two-layer systems of the MeSi₂/Si/MeSi₂/Si (Me-Co, Na) type with an integrated thickness not exceeding 40-50 nm; the thickness of the CoSi₂ surface film is $3 \div 5$ nm; the thickness of the near-surface film is $10 \div 12$ nm, and the thickness of the Si film between these layers is 10-20 nm.

Implementation of there search results. Based on the results of the study of the formation of the Mo and Si surface and in the surface region of nanosized phases:

The results obtained on the formation of nanoscale phases on the surface and in the near-surface region of Mo and Si were used in scientific projects OT-A3-56 "Development of uncooled high-efficiency receivers of thermal radiation and thermoelectric infrared radiation converters based on films of higher manganese silicide" and F-2-31 "Investigation of the structure and physical properties of nanosized films of metal silicides and the development of heat-sensitive structures "(Reference No FTA-0211/360 Science and Technologies Agency of the Republic of Uzbekistan dated July 19, 2017);

The main regularities of the formation of nanoscale phases and $MeSi_2$ layers in the near-surface region and on their basis are studied. The triple estimation of the sizes and determination of the parameters of the energy zones was developed (the catalog of the VIII Republican Fair of Innovative Ideas, Technologies and Projects "Electronic Installation for Measurement and Stabilization of Temperature of Electronic Devices"). The developed device allowed to save energy.

The outline of the thesis. The thesis consists of an introduction, four chapters, a conclusion, a list of references. The thesis consists of 135 pages.

ЭЪЛОН ҚИЛИНГАН ИШЛАР РЎЙХАТИ СПИСОК ОПУБЛИКОВАННЫХ РАБОТ LIST OF PUBLISHED WORKS

I бўлим (I часть, part I)

1. Нурматов Н.А., Эргашов Ё.С., Холов А. Исследование ионноимплантированных атомов молибдена на поверхности монокристаллов ниобия // Узбекский Физический Журнал. -Ташкент, 2011, -Т. 13, №2, -С.129-132. (01.00.00, №5).

2. Бурибаев И., Нурматов Н.А., Эргашов Ё.С., Талипов Н., Холов А. Исследование фотоэлектронных спектров ионно-имплантированного монокристалла Мо(111) // Поверхность. Рентгеновские, синхротронные и нейтронные исследования. -Россия, 2012, №9, -С.55-58. (01.04.04, №39).

3. Нурматов Н.А., Эргашов Ё.С., Холов А., Хамиджонов И.Х., Матякубов Б.М. Исследование распределение атомов ниобия по глубине сплава молибдена с ниобием // Вестник НУУ3. -Ташкент, 2013, №2/1, -С.49-51. (01.00.00, №3).

4. Нурматов Н.А., Эргашов Ё.С., Холов А., Талипов Н., Хамиджонов И.Х. Влияние поверхностных состояный на термоэлектронную эмиссию Мо(111), имплантированного ионами ниобия // Узбекский Физический Журнал. - Ташкент, 2013, -Т. 15, №1-2, -С.87-89. (01.00.00, №5).

5. Эргашов Ё.С. Определение оптимальных режимов ионной бомбардировки и последующего отжига с целью создания наноразмерных структур на поверхности Si // Вестник ТГТУ. -Ташкент, 2015, спец. выпуск, -С.53-56. (05.00.00; №16)

6. Ergashov Y.S., Tashmukhamedova D.A., Rabbimov E. Energy Spectra of SiO₂ Nanofilms Formed on a Silicon Surfaceby Ion Implantation // Journal of Surface Investigation. X-ray, Synchrotron and Neutron Techniques. -Russia, 2015, -Vol. 9, №2, -P.350–354. (№11. Springer, IF: 0,359).

7. Ergashov E. S., Isakhanov Z. A., and Umirzakov B. E. Transmission of Electromagnetic Waves through Thin Cu Films.ISSN 1063-7842, Technical Physics, 2016, Vol. 61, No. 6, -P.953–955. (№11. Springer, IF: 0,632).

8. Ergashov Y. S., Tashmukhamedova D. A., and Umirzakov B. E. On the Synthesis of Nanoscale Phases of Metal Silicides in the Near-Surface Region of Silicon and the Study of Their Electronic Structures by Passing Light. ISSN 1027-4510, Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques, 2017, -V. 11, No. 2, -P. 480–484. (№11. Springer, IF: 0,359).

9. Y.S. Ergashov, B.E. Umirzakov. Effect of Implantation of Ba⁺ and Nb⁺ Ions on the Morphology, Composition, and Emission Properties of Mo (111). ISSN 1064-2269, Journal of Communications Technology and Electronics, 2017, -Vol. 62, -No. 6, -P. 612–615. (№11. Springer, IF: 0,446).

10. Ergashov Y. S. Composition and Properties of Nanoscale Si Structures Formed on the CoSi₂/Si(111) Surface by Ar+ Ion Bombardment. ISSN 1063-7842, Technical Physics, 2017, -V. 62, No. 5, pp. 777–780. (№11. Springer, IF: 0,632). 11. Нурматов Н.А., Эргашов Ё.С., Отамуродов Г.Р., Талипов Н. Исследование особенности фотоэлектронных спектров поверхности монокристалла молибдена имплантированных низкоэнергетическими ионами ниобия // Аспирант и соискатель. -Россия, 2012, -№2, -С.195-198.

12. Нурматов Н.А., Эргашов Ё.С., Холов А., Отамуродов Г.Р., Хамиджонов И.Х. Исследование низкоэнергетической ионной имплантации атомов ниобия в монокристаллических образцах из молибдена // Новые материалы и технологии в металлургии и машиностроении. -Украина, 2013, №1, -С.135-138.

13. Эргашов Ё.С. Изучение формирования фотоэлектронных спектров ионнолегированного монокристалла молибдена // UzPEC – 5: 5-ая конференции по Физической электронике. 28-30 Октября. 2009. -Ташкент. -С.64

14. Бурибаев И., Нурматов Н.А., Холов А., Талипов Н., Эргашов Ё.С. О механизмах образования твердого раствора замещения в металлическых сплавах полученных ионным легированием // UzPEC – 5: 5-ая конференции по Физической электронике. 28-30 Октября 2009. -Ташкент. -С.73

15. Нурматов Н.А., Эргашов Ё.С., Холов А., Талипов Н. Исследование ионноимплантированных атомов молибдена на поверхности монокристаллов ниобия // Взаимодействия ионов с поверхностью: Сборник Материалы XVIII – Международной конференции 25-29 август 2011,. -Звенигород. 2011, IV-секция, T1, -С. стр.276-279

16. Нурматов Н.А., Эргашов Ё.С., Холов А., Талипов Н. Исследование особенности электронной структуры поверхности монокристалла молибдена имплантированных низкоэнергетическими ионами ниобия // Взаимодействия ионов с поверхностью: Сборник Материалы XVIII – Международной конференции 25-29 август 2011,. -Звенигород. 2011, IV-секция, -С. Т1, -С.195-198

17. Нурматов Н.А., Эргашов Ё.С., Холов А., Талипов Н., Хамиджонов И.Х. Влияние температуры на фотоэлектронную эмиссию Mo(111) имплантированногоионаминиобия // International conference of Actual problems physical electronics. November 28, 2012, pp.2.

18. Нурматов Н.А., Эргашов Ё.С., Талипов Н., Хамиджонов И.Х.. Исследование термодиффузии, сегрегации и распределение атомов ниобия по глубине в разбавленных сплавах молибдена с ниобием // Взаимодействия ионов с поверхностью: Труды XXI международной конференции Ярославль, Россия 22–26 августа 2013 г, Т1, -С. стр.344-347

19. Ergashov Y.S. Study thermal diffusion, segregation and distribution of niobium atoms in depth of diluted alloy of molybdenum with niobium //TWAS Regional Conference of Young Scientists on Recent Trends in Physical & Biological Sciences, March 7-8, 2014 at Bangalore, India, p.№7.

20. Нурматов Н.А., Эргашов Ё.С. Состав, структура и эмиссионные свойства Мо, W, Ti легированных ионной бомбардировкой // Взаимодействия заряженных частиц с кристаллами: 44-международной Тулиновской

конференции 27-29-май 2014, Москва, -С.95.

21. Умирзаков Б.Е., Эргашов Ё.С., Раббимов Э. Энергетические спектры нанопленочных структур BaSi₂, CoSi₂ и SiO₂, созданныхна поверхности Si ионной имплантацией // Взаимодействия заряженных частиц с кристаллами: 44-международной Тулиновской конференции 27-29-май 2014, Москва. - С.100.

22. Нормуродов М.Т., Ташатов А.К., Мирджалилова М.А., Донаев С.Б., Эргашов Ё.С. Изучение процессов образования наноструктур Si на поверхности SiO₂ при ионной бомбардировке // Мукобил энергия манбаларидан фойдаланишнинг долзарб муаммолари: Республика илмий-техникавий анжуман материаллари, Карши, 28-29 апрель 2014, -С. 273.

23. Эргашов Ё.С., Исаханов З.А., Ташмухамедова Д.А., Умирзаков Б.Е. Прохождение электромагнитных излучений через тонкие нанопленкимонокристаллического Си // Оптическим и фотоэлектрическим явлениям в полупроводниковых микро и наноструктурах: Ш Международной конференция, Фергана, 14-15 ноября 2014, -С.222.

24. Tashmukhamedova D.A., Umirzakov B.E., Boltaev X.X., Ergashov Y.S. Profiles distribution of atoms to border nanofilms of systems $Si/SiO_2/Si$, created by ionic implantation // E-MRS: Grand Palais – France Spring Meeting from 2015 May 11th to 15th Lille, -P.9/14.

25. Умирзаков Б.Е., Эргашов Ё.С., Ташатов А.К., Холмухамедова В.Х. Ширина запрещенной зоны наноструктур Si созданных на поверхности SiO₂ ионной бомбардировкой // Взаимодействия заряженных частиц с кристаллами: 45-межд. Тулиновской конференции 26-28-май, 2015 Москва. - С.148.

26. Умирзаков Б.Е., Эргашов Ё.С., Донаев Б.Д. Ширина запрещенной зоны нанокристаллических фаз NaSi₂/Si и Si/SiO₂ // Фундаментальные и прикладные вопросы физики: Сборник тезисов докладов международной конференции, 5 - 6 ноября 2015 й., Ташкент, -С.302-304.

27. Ergashov Y.S., Tashatov A.K., Umirzakov B.E. Obtaining nanosized phases of metals silicide in the surface region of Si and investigation their electronic structure by the me. E-MRS: Spring Meeting, France. May 2–6, 2016. BB.13.11

28. Умирзаков Б.Е., Ташмухамедова Д.А., Эргашов Ё.С., Ибрагимова Б.В. Получение наноразмерных фаз CoSi₂ на поверхности и приповерхностной области Si // Взаимодействия заряженных частиц с кристаллами: Тезисы докл. XLVI межд. Тулиновская конф. Москва. 31 мая – 2 июня 2016, -С. 166.

29. Умирзаков Б.Е., Эргашов Ё.С., Болтаев Х.Х., Раббимов Э., Ташмухаммедова Д.А. Профили распределения атомов Si по глубине системы Si-CoSi₂-Si // Актуальные проблемы молекулярной спектроскопии конденсированных сред: V Межд. конф. 22-24 сентября 2016. –Самарканд. 2016. –С.85.

30. Эргашов Ё.С., Нарбаев А.Э., Абдувойитов А.А., Ташмухамедова Д.А., Умирзаков Б.Е.. Легирование пленок Si со стороны подложки. XI Конференция и X Школа молодых ученых и специалистов по актуальным проблемам физики, материаловедения, технологии и диагностики кремния,

нанометровых структур и приборов на его основе // Кремний-2016: 12-15 сентября 2016 г., Новосибирск. -С.171.

31. Ergashov Y.S., Donaev B.D., Umirzakov B.E. Composition and properties of nanoscale structures Si, created on a surface of $CoSi_2/Si(111)$ bombardment with ions Ar⁺. New Trends of Development Fundamental and Applied Physics: Problems, Achievements and Prospects 10-11 November 2016, Tashkent. P.372-373.

32. Ergashov Y.S., Umirzakov B.E. Obtaining and study of the electrical properties of nanoscale structures of $MeSi_2$ in different depths Si // E-MRS: Spring Meeting, Symposium P. Strasbourg, France. May 22 – 26, 2017. P 9.52

33. Эргашов Ё.С., Умирзаков Б.Е., Донаев Б.Д., Ибрагимова Б.В. Получение и изучение электрических свойств наноразмерных стуктур MeSi₂ на различных глубинах в кремнии // Взаимодействия заряженных частиц с кристаллами: Тезисы докладов XLVII международная Тулиновская конференция. Москва. 30 мая – 1 июня 2017 г, -С. 139.

34. Эргашов Ë.C., Ташмухамедова Д.А., Донаев Б.Д. Получение наноразмерных слоев CoSi₂ на поверхности и приповерхностной области Si // прикладные вопросы физики: Фундаментальные И Международная конференция, АНРУз НПО «Физика- солнца», 13-14 июнь 2017 г. Т.2. -С.199-200.

Авторефератнинг ўзбек, рус ва инглиз тилларидаги нусхалари «Тил ва адабиёт таълими » тахририятида тахрирдан ўтказилди. (29.06.2017 йил)

Босишга рухсат этилди: 06.07.2017 йил Бичими 60х84 1/8, «Times New Roman» гарнитураси. Офсет усулида босилди. Шартли босма табоғи 2.75 нашр босма табоғи 2.5 Тиражи: 100. Буюртма: № 8. «Aloqachi» босмахонасида чоп этилди. Тошкент шаҳри, А. Темур кучаси 108