

Volume 6, No.9, September 2019

Journal of Global Research in Mathematical Archives

ISSN 2320 - 5822

RESEARCH PAPER

Available online at http://www.jgrma.info

BOUND AND GROUND STATES OF A SPIN-BOSON MODEL WITH AT MOST ONE PHOTON: NON-INTEGER LATTICE CASE

Nigora Nasirova

Department of Physics, Bukhara State University, Bukhara, Uzbekistan; E-mail: nigora.nasirova@mail.ru

Abstract: A non-integer lattice model of radiative decay (so-called spin-boson model) of a two level atom and at most one photon is considered. The number and location of the eigenvalues (bound and ground states) of this model are studied.

INTRODUCTION

In the theory of solid-state physics [1], quantum field theory [2] and statistical physics [3,4] are arise the problems related with the standard or "truncated" spin-boson models. In a well-known model of radiative decay (the so-called spin-boson model) it is assumed that an atom, which can be in two states - ground state with energy - ε and excited state with energy ε - emits and absorbs photons, going over from one state to the other [4-7].

For a fixed h>0 we define the set T_h^d as the d-dimensional torus, the cube $(-\frac{\pi}{h}; \frac{\pi}{h}]^d$ with appropriately identified sides equipped with its Haar measure.

Let $L^2(T_h^d)$ be the Hilbert space of square integrable (complex) functions defined on T_h^d .

We recall that the energy operator of model of a spin-boson model with at most one photon is given by the (formal) expression

$$\mathcal{A} := \begin{pmatrix} A_{00} & A_{01} \\ * & A_{11} \end{pmatrix}$$

and acts in the Hilbert space

$$H := C^2 \otimes F_h^{(2)}(L_2(T_h^d)).$$

Here matrix elements A_{ij} are defined by

$$A_{00}f_0^{(\sigma)} = \mathcal{E}f_0^{(\sigma)}, \ A_{01}f_1^{(\sigma)} = \alpha \int_{T_h^d} v(t)f_1^{(-\sigma)}(t)dt,$$

$$(A_{11}f_1^{(\sigma)})(k) = (\varepsilon\sigma + w(k))f_1^{(\sigma)}(k)\,, \ \ f = \{\{f_0^{(\sigma)}, f_1^{(\sigma)}\} \colon \sigma = \pm\} \in H\,,$$

 C^2 is the state of the two-level atom and $F_b^{(2)}(L_2(T_h^d)) := C \oplus L^2(T_h^d)$ is the two-particle cut subspace of the symmetric Fock space for bosons:

$$F_b(L_2(T_h^d)) := C \oplus L_2(T_h^d) \oplus L_2^{sym}((T_h^d)^2) \oplus \ldots \oplus L_2^{sym}((T_h^d)^n) \oplus \ldots,$$

where $L_2^{sym}((T_h^d)^n)$ is the Hilbert space of symmetric functions of n variables.

We make the following assumptions: $\varepsilon > 0$ the dispersion of the free field $w(\cdot)$ is an analytic on T_h^d and has a unique zero minimum at the point $0 \in T_h^d$; $v(\cdot)$ is a real-valued analytic function on T_h^d ; the coupling constant $\alpha > 0$ is an arbitrary. Here $\alpha v(k)$ means the coupling between the atoms and the field modes. In general, the dispersion relation $w \ge 0$ and the coupling function v are fixed by the physical of the problem.

We notice that this model is bounded and self-adjoint, and can be considered as a non-integer lattice analog of the truncated spin-boson Hamiltonian. In the "algebraic" sense, a non-integer lattice spin-boson Hamiltonian is similar to a standard one with only the difference is that \mathcal{A} does not act in the Euclidean space R^d but on a torus T_h^d .

We write elements F of the space $C^2 \otimes F_b^{(2)}(L_2(T_h^d))$ in the form $F = \{f_0^{(\sigma)}, f_1^{(\sigma)}\}$, and a discrete variable $\sigma = \pm$. The norm in $C^2 \otimes F_b^{(2)}(L_2(T_h^d))$ is given by

$$||F||^2 := \sum_{\sigma = \pm} \left(|f_0^{(\sigma)}|^2 + \int_{T_h^d} |f_1^{(\sigma)}(k)|^2 dk \right).$$

It is easy to see that transformation $U: C^2 \otimes F_b^{(2)}(L_2(T_h^d)) \to F_b^{(2)}(L_2(T_h^d)) \oplus F_b^{(2)}(L_2(T_h^d))$ defined by

$$U: \left(\begin{pmatrix} f_0^{(+)} \\ f_0^{(-)} \end{pmatrix}, \begin{pmatrix} f_1^{(+)} \\ f_1^{(-)} \end{pmatrix} \right) \rightarrow \left(\begin{pmatrix} f_0^{(+)} \\ f_1^{(-)} \end{pmatrix}, \begin{pmatrix} f_0^{(-)} \\ f_1^{(+)} \end{pmatrix} \right),$$

is a unitary operator and block-diagonalizes the model A, i.e.

$$U*AU=diag\{A^{(+)},A^{(-)}\},$$

where the operator matrix

$$\mathcal{A}^{(\sigma)} \coloneqq \begin{pmatrix} A_{00}^{(\sigma)} & A_{01} \\ A_{01}^* & A_{11}^{(\sigma)} \end{pmatrix}$$

acts in the truncated Fock space $F_h^{(2)}(L_2(T_h^d))$. The matrix elements of $\mathcal{A}^{(\sigma)}$ are given by

$$\begin{split} A_{00}^{(\sigma)}f_0 = & \varpi f_0 \;,\;\; A_{01}f_1 = \alpha \int\limits_{T_h^d} v(t)f_1(t)dt \;, \\ (A_{11}^{(\sigma)}f_1)(k) = & (\varpi + w(k))f_1(k) \;,\;\; f = \{f_0\,,f_1\} \in F_b^{(2)}(L_2(T_h^d)) \end{split}$$

For each $s=\pm$ we consider the model $\mathcal{A}_0^{(\sigma)}$ acting in the Hilbert space $F_b^{(2)}(L_2(T_h^d))$ as

$$\mathcal{A}_0^{(\sigma)} := \begin{pmatrix} 0 & 0 \\ 0 & A_{11}^{(\sigma)} \end{pmatrix}.$$

One can show that the essential spectrum of a model $\mathcal{A}^{(\sigma)}$ coincides with the essential spectrum of $\mathcal{A}_0^{(\sigma)}$, that is,

$$\sigma_{ess}(\mathcal{A}^{(\sigma)}) = \sigma_{ess}(\mathcal{A}_0^{(\sigma)}) = [-\sigma\varepsilon, -\sigma\varepsilon + M_h], \ M_h := \max_{k \in T_h^d} w(k).$$

One of the main result of the paper is the following theorem. It describes the spectrum, essential spectrum, point spectrum of the model \mathcal{A} and gives the information about the lower bound of the essential spectrum.

Theorem 1. For the spectrum, essential spectrum and point spectrum of the model \mathcal{A} the equalities hold:

$$\sigma(\mathcal{A}) = \sigma(\mathcal{A}^{(+)}) \cup \sigma(\mathcal{A}^{(-)});$$

$$\sigma_{ess}(\mathcal{A}) = \sigma_{ess}(\mathcal{A}^{(+)}) \cup \sigma_{ess}(\mathcal{A}^{(-)});$$

$$\sigma_{p}(\mathcal{A}) = \sigma_{p}(\mathcal{A}^{(+)}) \cup \sigma_{p}(\mathcal{A}^{(-)}).$$

Moreover,

$$\min \sigma_{ess}(A) = -\varepsilon$$

Remark 1. Since the part of the set $\sigma_{disc}(\mathcal{A}^{(\sigma)})$ might be subset of $\sigma_{ess}(\mathcal{A}^{(-\sigma)})$, the assertions are hold:

$$\sigma_{disc}(\mathcal{A}) \subseteq \sigma_{disc}(\mathcal{A}^{(+)}) \cup \sigma_{disc}(\mathcal{A}^{(-)});$$

$$\sigma_{disc}(\mathcal{A}) = \{\sigma_{disc}(\mathcal{A}^{(+)}) \cup \sigma_{disc}(\mathcal{A}^{(-)})\} \setminus \sigma_{ess}(\mathcal{A}).$$

Moreover,

$$\sigma_{disc}(\mathcal{A}) = \bigcup_{\sigma = +} \{ \sigma_{disc}(\mathcal{A}^{(\sigma)}) \setminus \sigma_{ess}(\mathcal{A}^{(-\sigma)}) \}.$$

We note that the models $\mathcal{A}^{(\sigma)}$, $\sigma = \pm$, have a more simple structure than the operator \mathcal{A} , and hence, Theorem 1 plays an important role in the subsequent investigations of the essential spectrum of \mathcal{A} .

Theorem 2. For any $\alpha > 0$ the operator \mathcal{A} at least one and at most four eigenvalues (bound states). Moreover, two of them are smaller than - ε and other two of them are bigger than $M_h + \varepsilon$.

Remark 2. In Theorem 2, the eigenvalue E_0 of \mathcal{A} which exists for any $\alpha > 0$ and h > 0 is usually called ground state. The corresponding eigenvector-function has a form $F = (f_0^{(+)}, f_0^{(-)}, f_1^{(+)}, f_1^{(-)})$, where

$$f_0^{(+)} = 0, \ f_0^{(-)} = const \neq 0, \ f_1^{(+)}(k) = -\frac{\alpha v(k) f_0^{(-)}}{\varepsilon + w(k) - E_0}, \ f_1^{(-)}(k) = 0.$$

We remark that the spectral properties of similar models to $\mathcal{A}^{(\sigma)}$, $\sigma = \pm$, are studied in many papers, see, for example, [8-13].

REFERENCES

- [1] A. I. Mogilner. Hamiltonians in solid state physics as multiparticle discrete Schrödinger operators: problems and results. Advances in Sov. Math., **5** (1991), 139-194.
- [2] K. O. Friedrichs. Perturbation of spectra in Hilbert space. Amer. Math. Soc. Providence, Rhole Island, 1965.
- [3] V. A. Malishev, R. A. Minlos. Linear infinite-particle operators. Translations of Mathematical Monographs. 143, AMS, Providence, RI, 1995.
- [4] R. A. Minlos, H. Spohn. The three-body problem in radioactive decay: the case of one atom and at most two photons. Topics in Statistical and Theoretical Physics. Amer. Math. Soc. Transl., Ser. 2, 177, AMS, Providence, RI, 1996, 159-193.
- [5] M. Hübner, H. Spohn. Spectral properties of the spin-boson Hamiltonian. Ann. Inst. Henri Poincaré, 62:3 (1995), 289-323.
- [6] H. Spohn. Ground states of the spin-boson Hamiltonian. Comm. Math. Phys., 123 (1989), 277-304.
- [7] Yu. Zhukov, R. Minlos. Spectrum and scattering in a "spin-boson" model with not more than three photons. Theor. Math. Phys., **103**:1 (1995), 398-411.
- [8] M.Muminov, H.Neidhardt, T.Rasulov. On the spectrum of the lattice spin-boson Hamiltonian for any coupling: 1D case. Journal of Mathematical Physics, 56 (2015), 053507.
- [9] T.H.Rasulov. On the finiteness of the discrete spectrum of a 3x3 operator matrix. Methods of Functional Analysis and Topology, 22:1 (2016), 48-61.
- [10] T.Kh.Rasulov. Branches of the essential spectrum of the lattice spin-boson model with at most two photons. Theoretical and Mathematical Physics, 186:2 (2016), 251-267.
- [11] M.Muminov, H.Neidhardt, T.Rasulov. On the spectrum of the lattice spin-boson Hamiltonian for any coupling: 1D case. Journal of Mathematical Physics, 56 (2015), 053507.
- [12] M.I.Muminov, T.H.Rasulov. On the eigenvalues of a 2x2 block operator matrix. Opuscula Mathematica. 35:3 (2015), 369-393
- [13] M.I.Muminov, T.Kh.Rasulov. An eigenvalue multiplicity formula for the Schur complement of a 3x3 block operator matrix. Siberian Math. J., 56:4 (2015), P. 878-895.

SHORT BIODATA OF THE AUTHOR

Nigora NASIROVA

She is graduated from the Bukhara State University. Her scientific interests are connected with spectral and scattering analysis of a standard and lattice spin-boson Hamiltonians. At the present N.Nasirova is an Assistant of Department of Physics at the Bukhara State University.

