RESEARCH PAPER
Available online at http://www.jgrma.info

DESCRIPTION OF THE NUMERICAL RANGE OF A FRIEDRICHS MODEL WITH RANK TWO PERTURBATION

Tulkin Rasulov ${ }^{* 1}$ and Bekzod Bahronov ${ }^{2}$
*1 Department of Mathematics, Bukhara State University, Bukhara, Uzbekistan rth@mail.ru ${ }^{1}$
${ }^{2}$ Department of Mathematics, Bukhara State University, Bukhara, Uzbekistan
b.bahronov@mail.ru ${ }^{2}$

Abstract: In the paper we consider a Friedrichs model A with rank two perturbations. It is associated with a system of two quantum particles on three-dimensional lattice. We establish the connection between the spectrum and numerical range of A.

INTRODUCTION

The numerical range is an important tool in the spectral analysis of bounded and unbounded linear operators in Hilbert spaces. First of all we give its definition. Let H be a complex Hilbert space with inner product (.,.) and A be a bounded linear operator in H. Then the numerical range of an A is the subset of the complex numbers C, given by

$$
W(A):=\{(A x, x): x \in H,\|x\|=1\} .
$$

It was first studied by O.Toeplitz in [1]; he proved that the numerical range of a matrix contains all its eigenvalues and that its boundary is a convex curve. In [2] F.Hausdorff showed that indeed the set $W(A)$ is convex. In fact, it turned out that this continues to hold for general bounded linear operators and that the spectrum is contained in the closure $\overline{W(A)}$ (see [3]). So, the numerical range of a bounded linear operator satisfies the so-called spectral inclusion property

$$
W(A) \subset \sigma_{p}(A), \quad \overline{W(A)} \subset \sigma(A)
$$

for the point spectrum $\sigma_{p}(A)$ (or set of eigenvalues) and the spectrum $\sigma(A)$ of A; note that $W(A)$ is closed if $\operatorname{dim} H<\infty$.
In this paper we consider a Friedrichs model A with rank two perturbation and we study its numerical range. We find the necessity conditions which guarantees that the numerical and spectrum of A are coincide.

FRIEDRICHS MODEL

Let T^{3} be the three-dimensional torus, the cube $[-\pi, \pi)^{3}$ with appropriately identified sides equipped with its Haar measure and $L\left(T^{3}\right)$ be the Hilbert space of square integrable (complex) functions defined on T^{3}.

Let us consider an operator (Friedrichs model) A acting on the Hilbert space $L\left(T^{3}\right)$

$$
\begin{equation*}
A:=A_{0}-\mu_{1} V_{1}+\mu_{2} V_{2} \tag{1}
\end{equation*}
$$

where the operators A_{0} and $V_{\alpha}, \alpha=1,2$ are defined by

$$
\left(A_{0} f\right)(p)=u(p) f(p), \quad\left(A_{0} f\right)(p)=v_{\alpha}(p) \int_{T^{3}} v_{\alpha}(t) f(t) d t, \alpha=1,2
$$

Here $\mu_{\alpha}>0, \alpha=1,2$ are positive reals, $u(\cdot)$ and $v_{\alpha}(\cdot), \alpha=1,2$ are real-valued continuous functions on T^{3}. Under these assumptions, operator A defined by (1) is bounded and self-adjoint.

Throughout this paper, we assume that the function $u(\cdot)$ has a unique non-degenerate minimum at the point $p_{1} \in T^{3}$ has a unique non-degenerate maximum at the point $p_{2} \in T^{3}$, the function $v_{\alpha}(\cdot)$ has the continuous partial derivatives up to the third-order inclusive at some neighborhood of $p_{\alpha} \in T^{3}$. Suppose that

$$
\begin{equation*}
\operatorname{mes}\left(\sup p\left\{v_{1}(\cdot)\right\} \cap \sup p\left\{v_{2}(\cdot)\right\}\right)=0 \tag{2}
\end{equation*}
$$

In accordance with Weyl's theorem it is clear that the essential spectrum of the operator A coincides with the spectrum of A_{0} :

$$
\sigma_{e s s}(A)=\left[E_{1} ; E_{2}\right]
$$

where the numbers E_{1} and E_{2} are defined by

$$
E_{1}:=\min _{p \in T^{3}} u(p), \quad E_{2}:=\max _{p \in T^{3}} u(p)
$$

To study the spectral properties of the operator A, we introduce the following two bounded self-adjoint operators (Friedrichs model with rank one perturbation) A_{0}, acting on $L_{2}\left(T^{3}\right)$ by the rule

$$
\begin{equation*}
A_{0}:=A_{0}+(-1)^{\alpha} \mu_{\alpha} V_{\alpha}, \quad \alpha=1,2 \tag{3}
\end{equation*}
$$

Let C be the field of complex numbers. We define an analytic function $\Delta_{\mu_{\alpha}}(\cdot)$ (the Fredholm determinant associated with the operator A_{α}) on $C \backslash\left[E_{1} ; E_{2}\right]$ by

$$
\Delta_{\mu_{\alpha}}(z):=1+(-1)^{\alpha} \mu_{\alpha} \int_{T^{3}} \frac{v_{\alpha}^{2}(t) d t}{u(t)-z}
$$

The following lemma is a simple consequence of the Birman-Schwinger principle and the Fredholm theorem.
Lemma 1. The operator A_{α} has an eigenvalue $z \in C \backslash\left[E_{1} ; E_{2}\right]$ if and only if $\Delta_{\mu_{\alpha}}(z)=0$.
From Lemma 1 it follows that for the discrete spectrum of A_{α} the equality

$$
\sigma_{d i s c}\left(A_{\alpha}\right)=\left\{z \in C \backslash\left[E_{1} ; E_{2}\right]: \Delta_{\mu_{\alpha}}(z)=0\right\}
$$

holds.

Lemma 2. The number $z \in C \backslash\left[E_{1} ; E_{2}\right]$ is an eigenvalue of A if and only if z is an eigenvalue one of the operators $A_{\alpha}, \alpha=1,2$.

From Lemma 2 we conclude that

$$
\sigma_{d i s c}(A)=\sigma_{d i s c}\left(A_{1}\right) \cup \sigma_{d i s c}\left(A_{2}\right)
$$

Then using the monotonic property of the function $\Delta_{\mu_{\alpha}}(\cdot)$ on $\left(-\infty, E_{1}\right)$ and $\left(E_{1}, \infty\right)$ and Lemma 1 we obtain that the operator A has no more than one simple eigenvalue lying on the left-hand side of E_{1} and right-hand side of E_{2}.

MAIN RESULTS

We set

$$
\mu_{\alpha}^{0}:=(-1)^{\alpha+1}\left(\int_{T^{3}} \frac{v_{\alpha}^{2}(t) d t}{u(t)-z}\right)^{-1}, \alpha=1,2
$$

One of the main results of the present paper is the following assertion.
Lemma 3. If $\mu_{\alpha}=\mu_{\alpha}^{0}, \alpha=1,2$, then the operator A has no eigenvalues lying outside of its essential spectrum.
The following theorems describe the numerical range $W(A)$ of A for the special case $\mu_{\alpha}=\mu_{\alpha}^{0}, \alpha=1,2$.
Theorem 4. If $\mu_{\alpha}=\mu_{\alpha}^{0}$ and $v_{\alpha}\left(p_{\alpha}\right)=0$ for $\alpha=1,2$, then

$$
W(A)=\left[E_{1} ; E_{2}\right](=\sigma(A))
$$

Theorem 5. If $\mu_{\alpha}=\mu_{\alpha}^{0}$ and $v_{\alpha}\left(p_{\alpha}\right) \neq 0$ for $\alpha=1,2$, then $W(A)=\left(E_{1} ; E_{2}\right)$.
From theorems 4 and 5 we obtain
Corollary 6. Let $\mu_{\alpha}=\mu_{\alpha}^{0}, \alpha=1,2$.
(i) If $v_{1}\left(p_{1}\right)=0$ and $v_{2}\left(p_{2}\right) \neq 0$, then $W(A)=\left[E_{1} ; E_{2}\right)$;
(ii) If $v_{1}\left(p_{1}\right) \neq 0$ and $v_{2}\left(p_{2}\right)=0$, then $W(A)=\left(E_{1} ; E_{2}\right]$.

Note that $[4,5]$, if $\mu_{\alpha}=\mu_{\alpha}^{0}$ and $v_{\alpha}\left(p_{\alpha}\right)=0$ for some $\alpha \in\{1,2\}$, then the number $z=E_{\alpha} \in \sigma_{e s s}(A)$ is a threshold eigenvalue of A; if $\mu_{\alpha}=\mu_{\alpha}^{0}$ and $v_{\alpha}\left(p_{\alpha}\right) \neq 0$ for for some $\alpha \in\{1,2\}$, then the number $z=E_{\alpha} \in \sigma_{\text {ess }}(A)$ is a
virtual level of A Spectral properties of the generalized Friedrichs model, in particular, related with the usual eigenvalues, threshold eigenvalues and threshold energy resonances of the generalized Friedrichs model are studied in many works, see for example, [6-10]. So, using the methods of threshold analysis one can prove the same results for the generalized Friedrichs model.

REFERENCES

[1] O. Toeplitz. Das algebraische Analogon zu einem Satze von Fejer. Math. Z., 2:1-2 (1918), 187-197.
[2] F. Hausdorff. Der Wertvorrat einer Bilinearform. Math. Z., 3:1 (1919), 314--316.
[3] A. Wintner. Zur Theorie der beschrankten Bilinearformen. Math. Z., 30:1 (1929), 228-281.
[4] T.Kh.Rasulov. Asymptotics of the discrete spectrum of a model operator associated with the system of three particles on a lattice. Theoret. and Math. Phys. 163 (2010), no. 1, 429-437.
[5] M.I.Muminov, T.H.Rasulov. Universality of the discrete spectrum asymptotics of the three-particle Schrodinger operator on a lattice. Nanosystems: Physics, Chemistry, Mathematics, 6:2 (2015), 280-293.
[6] T.H.Rasulov. On the finiteness of the discrete spectrum of a 3×3 operator matrix. Methods of Functional Analysis and Topology, 22:1 (2016), 48--61.
[7] T.Kh.Rasulov. Branches of the essential spectrum of the lattice spin-boson model with at most two photons. Theoretical and Mathematical Physics, 186:2 (2016), 251-267.
[8] M.Muminov, H.Neidhardt, T.Rasulov. On the spectrum of the lattice spin-boson Hamiltonian for any coupling: 1D case. Journal of Mathematical Physics, 56 (2015), 053507.
[9] M.I.Muminov, T.H.Rasulov. On the eigenvalues of a 2×2 block operator matrix. Opuscula Mathematica. 35:3 (2015), 369393.
[10]M.I.Muminov, T.Kh.Rasulov. An eigenvalue multiplicity formula for the Schur complement of a 3×3 block operator matrix. Siberian Math. J., 56:4 (2015), P. 878-895.

SHORT BIODATA OF ALL THE AUTHOR

Tulkin RASULOV

He is graduated from the Samarkand State University. His scientific interests are connected with spectral and scattering theory of block operator matrices and three-particle model operators on a lattice, in particular, Hamiltonians without conservation of particle number. At the present Dr. T.Rasulov is a head of Department of Mathematics at the Bukhara State University.

Bekzod BAHRONOV

He is graduated from the Bukhara State University. His scientific interests are connected with the analysis of the numerical range of a Friedrichs model, associated with the two-particle systems on a lattice. At the present B.Bahronov is a Master Student of Department of Mathematics at the Bukhara State University (Supervisor: Dr. Tulkin RASULOV).

