
STATE COMMITTEE OF COMMUNICATION, INFORMATIZATION AND

TELECOMMUNICATION TECHNOLOGIES OF THE REPUBLIC OF

UZBEKISTAN

TASHKENT UNIVERSITY OF INFORMATION TECHNOLOGIES

Coursework

Systemic theoretical approach to the design stream

ciphers

Performed By: Zarbiev V .233-12.

Adopted By : Gulomov Sh.R.

-Tashkent 2014-

CONTENT

1. Introduction

2. The stream code

3. The main differences of line codes from the block

4. Generator of pseudorandom numbers of Shamir

5. Design of line codes

6. System and theoretical approach to design

7. Euler's function in RSA

8. Code of RSA

9. Vizhener's code

10. Code Vernama

11. Codes of programs

12. The list of the used literature

1 Introduction

Stream codes on the basis of shift registers were actively used in the years of war,

even long before emergence of electronics. They were simple in design and

realization.

In 1965 Ernst Selmer, the main cryptographer of the Norwegian government,

developed the theory of sequence of shift registers. Later Solomon Golomb, the

mathematician of the U.S. National Security Agency, wrote the book under the

name "Shift Register Sequences" ("Sequences of shift registers") in which stated

the main achievements in this area, and also Selmer's achievements.

The great popularity to stream codes was brought by Claude Shannon's work

published in 1949 in which Shannon proved absolute firmness of the code of

Vernam (also known as a disposable notebook). In Vernam's code the key has

length equal to length of the most transferred message. The key is used as scale

and if each bit of a key gets out incidentally, it is impossible to open the code

(since all possible clear texts will be ravnoveroyatna). A large number of

algorithms of stream enciphering, such as is so far created: A3, A5, A8, MUGI,

PIKE, RC4, SEAL, ORION.

2 The stream code

The stream code — is the symmetric code in which each symbol of a clear text will

be transformed to a text in code symbol in dependence not only on the used key,

but also on its arrangement in a clear text stream. The line code realizes other

approach to symmetric enciphering, than block codes

3 The main differences of line codes from the block

The majority of the existing codes with a confidential key unambiguously can be

carried either to line, or to block codes. But the theoretical border between them is

quite indistinct. For example, algorithms of block enciphering in the mode of line

enciphering (an example are used: for algorithm of Desrezhimy CFB and OFB).

We will consider the main distinctions between line and block codes not only in

aspects of their safety and convenience, but also from the point of view of their

studying in the world:

• the most important advantage of line codes before block is the high speed of

enciphering, commensurable with a speed of receipt of entrance information;

therefore, enciphering practically in real time regardless of volume and word

length of a flow of the transformed data is provided.

• in synchronous line codes (unlike block) there is no effect of reproduction of

mistakes, that is number of the distorted elements in the deciphered sequence is

equal to number of the distorted elements of the ciphered sequence which came

from a communication channel.

• the structure of a line key can have weak spots which give the chance to the

cryptanalyst to receive additional information on a key (for example, at the small

period of a key the cryptanalyst can use the found parts of a line key for decoding

of the subsequent closed text).

• PSh unlike BSh can be often attacked by means of linear algebra (as releases of

separate registers of shift with the return linear communication can have

correlation with scale). Also the linear and differential analysis is quite

successfully applied to breaking of line codes.

Now about situation in the world:

• in the majority of works on the analysis and breaking of block codes the

algorithms of enciphering based on the DES standard are considered; for line codes

there is no the allocated direction of studying; methods of breaking of PSh are very

various.

• for line codes the set of the requirements which are criteria of reliability (the big

periods of output sequences, postulates of Golomba, nonlinearity) is established;

for BSh such accurate criteria aren't present.

• the European cryptographic centers, block – American generally are engaged in

research and development of line codes.

• research of line codes happens more dynamically, than block; recently it wasn't

made any noticeable discoveries in the sphere of DES algorithms while in the field

of line codes there was a set of progress and failures (some schemes seeming

resistant at further research didn't equal hopes of inventors).

4 Design of line codes

According to Rainer Rueppel it is possible to allocate four main approaches to

design of line codes:

• System and theoretical approach is based on creation for the cryptanalyst of

difficult, earlier unexplored problem.

• Slozhnostno-teoretichesky approach is based on a difficult, but known problem

(for example, factorization of numbers or discrete logarithming).

• Information and technical approach is based on attempt to conceal a clear text

from the cryptanalyst – regardless of that is what is the time spent for decoding, the

cryptanalyst won't find the unambiguous solution.

• Randomized approach is based on creation of a volume task; the cryptographer

thereby tries to make the solution of a problem of deciphering physically

impossible. For example, the cryptographer can cipher some article, and

instructions on will be a key what parts of article were used when enciphering. The

cryptanalyst should touch all casual combinations of parts of article before to him

carries, and he will define a key.

Theoretical criteria of Rainer Rueppel for design of line systems:

• long periods of output sequences;

• big linear complexity;

• diffusion – dispersion of redundancy in substructures, "spreading" of statistics on

all text;

• each bit of a stream of keys has to be difficult transformation of the majority of

bits of a key;

• criterion of nonlinearity for logical functions.

Still it isn't proved that these criteria are necessary or sufficient for safety of line

system of enciphering. It is also worth noticing that if the cryptanalyst possesses

unlimited time and computing power, the only realized stream code protected from

such opponent is the disposable notebook.

The simplest implementation of the line code is represented in drawing.

 The generator of scale gives out a key stream (scale):. We will designate a stream

of bits of a clear text. Then the stream of bits of a shifrotekst turns out by means of

operation XOR application: where.

Deciphering is made by the operation XOR between the same scale and the

ciphered text:.

It is obvious that if the sequence of bits of scale has no period and gets out

incidentally, it is impossible to hack the code. But this mode of enciphering has

also negative features. So keys, comparable on length with the transferred

messages, it is difficult to use in practice. Therefore usually apply a key of smaller

length (for example, 128 bits). By means of it the pseudorandom gammiruyushchy

sequence is generated (it has to satisfy to postulates of Golomba). Naturally,

pseudo-accident of scale can be used at attack to the stream code.

5 Generator of pseudo random numbers of Shamir

Edie Shamir used algorithm of RSA as the generator of pseudorandom numbers.

Though Shamir showed that a prediction of an exit of the generator of

pseudorandom numbers equivalently to breaking of RSA.

Cryptographic systems with an open key use so-called unilateral functions which

possess the following property:

If it is known , то to calculate rather simply

 If it is known , that for calculation isn't present a simple (effective) way.

The unilaterality is understood as not a theoretical one-orientation, but practical

impossibility to calculate the return value, using modern computing means, for a

foreseeable interval of time.

Complexity of a problem of factorization of work of two large prime numbers is

the basis for cryptographic system with an open key of RSA. For enciphering

transaction of exponentiation of the module of a large number is used. For

decoding for reasonable time (the return operation) it is necessary to be able to

calculate Euler's function from this large number for what it is necessary to know

decomposition of number on simple multipliers.

In cryptographic system with an open key each participant has as an open key

(English public key), and the closed key (English private key). In cryptographic

RSA system each key consists of couple of integers. Each participant creates the

opened and closed key independently. The closed key keeps each of them a secret,

and open keys can be told anyone or even to publish them. The opened and closed

keys of each participant of an exchange of messages in RSA cryptosystem form

"the coordinated couple" in the sense that they are the mutually return, that is:

 admissible couples of opened and closed keys

 enciphering functions and

decipherings such that messages , где — set of admissible

messages.

Algorithm of creation of open and confidential keys [to govern RSA keys are

generated as follows:

Two various casual prime numbers and a given size get out (for example, 1024 bits

everyone).

Work is calculated them , which is called as the module.

Value of function of Euler is calculated

 8 System and theoretical approach to design of stream codes

In practice, design of the stream code in many respects similar design of the block

code. In this case more mathematical theory is used, but eventually the

cryptographer offers some scheme and then tries to make its analysis.

According to Rainer Rueppel there are four various approaches to design of stream

codes:

— System and theoretical approach. Using a number of fundamental criteria and

laws of design, tries to make sure that each scheme creates a complex and

unknown problem for the cryptanalyst.

— Information and theoretical approach. Tries to keep a clear text unknown to the

cryptanalyst. Irrespective of the fact how many actions will be executed by the

cryptanalyst, he will never receive odnoznachnogoresheniye.

— Slozhnostno-teoretichesky approach. Tries to use as the basis for cryptosystem

some known and complex problem, such as decomposition on multipliers or a

capture of discrete logarithms, or to make cryptosystem to equivalent this problem.

— Randomized approach. Tries to create extremely big problem, forcing the

cryptanalyst to check a set of senseless data during cryptoanalysis attempts.

These approaches differ in assumptions of opportunities and abilities of the

cryptanalyst, definition of success of cryptoanalysis and understanding of safety.

The majority of researches in this area - theoretical, but among useless stream

codes are also the quite decent.

System and theoretical approach was used in all earlier provided stream codes, its

applications are result the majority of the stream codes used in the real world. The

cryptographer develops the generators of a stream of keys possessing the checked

characteristics of safety - the period, distribution of bits, linear complexity, etc. -

but not the codes based on the mathematical theory. The cryptographer also studies

various methods of cryptoanalysis of these generators and checks, whether are

steady a gene e-ratory in relation to these ways of opening.

Over time this approach led to emergence of a set of criteria of design of stream

codes. They were considered by Ryuppel it in detail gives theoretical bases of

these criteria.

— The long period without repetitions.

— Criterion of linear complexity - big linear complexity, a linear profile of

complexity, local linear complexity, etc.

— Statistical criteria, for example, ideal A:mernyeraspredeleniya.

— Confusion - each bit of a stream of keys has to be difficult transformation of all

or the majority of bits of a key.

— Diffusion - redundancy in substructures has to dissipate, leading to more

"smeared" statistics.

— Criteria of nonlinearity for logical functions, such as lack of correlation of t-go

of an order, distance before linear functions, avalanche criterion, etc.

This list of criteria of design isn't unique for the stream codes developed by means

of system and theoretical approach, it is fair for all stream codes. It is fair and for

all block codes. Feature of system and theoretical approach is that stream codes are

directly developed to satisfy to these criteria.

The main problem of such cryptosystems is the impossibility to prove their safety,

was never proved that these criteria of design are necessary or sufficient for safety.

The generator of a stream of keys can satisfy to all rules of development, but

nevertheless be unsafe. Another can be safe. This process still there is something

magic.

On the other hand opening of any of these generators of a stream of keys represents

an excellent problem for the cryptanalyst. If enough various generators are

developed, it can appear that the cryptanalyst won't begin to spend time, hacking

each of them. Perhaps he will be interested more by opportunity to become

famous, having achieved success, factorizing large numbers or calculating discrete

logarithms.

7 Euler's function in RSA

Setting up an RSA system involves choosing large prime numbers p and q,

computing n = pq and k = φ(n), and finding two numbers e and d such that ed ≡ 1

(mod k). The numbers n and e (the "encryption key") are released to the public,

and d (the "decryption key") is kept private.

A message, represented by an integer m, where 0 < m < n, is encrypted by

computing S = me (mod n).

It is decrypted by computing t = Sd (mod n). Euler's Theorem can be used to show

that if 0 < t < n, then t = m.

The security of an RSA system would be compromised if the number n could be

factored or if φ(n) could be computed without factoring n.

8 Code of RSA

RSA involves a public key and a private key. The public key can be known by

everyone and is used for encrypting messages. Messages encrypted with the public

key can only be decrypted in a reasonable amount of time using the private key.

The keys for the RSA algorithm are generated the following way:

1. Choose two distinct prime numbers p and q.

 For security purposes, the integers p and q should be chosen at random,

and should be of similar bit-length. Prime integers can be efficiently

found using a primality test.

2. Compute n = pq.

 n is used as the modulus for both the public and private keys. Its length,

usually expressed in bits, is the key length.

3. Compute φ(n) = φ(p)φ(q) = (p − 1)(q − 1) = n - (p + q -1), where φ is Euler's

totient function.

4. Choose an integer e such that 1 < e < φ(n) and gcd(e, φ(n)) = 1; i.e., e and

φ(n) are coprime.

 e is released as the public key exponent.

 e having a short bit-length and small Hamming weight results in more

efficient encryption – most commonly 216 + 1 = 65,537. However, much

smaller values of e (such as 3) have been shown to be less secure in

some settings.[5]

5. Determine d as d ≡ e−1 (mod φ(n)); i.e., d is the multiplicative

inverse of e (modulo φ(n)).

 This is more clearly stated as: solve for d given d⋅e ≡ 1 (mod φ(n))

 This is often computed using the extended Euclidean algorithm. Using

the pseudocode in the Modular integers section,

inputs a and n correspond to e and φ(n), respectively.

 d is kept as the private key exponent.

The public key consists of the modulus n and the public (or encryption)

exponent e. The private key consists of the modulus n and the private (or

decryption) exponent d, which must be kept secret. p, q, and φ(n) must also be

kept secret because they can be used to calculate d.

 An alternative, used by PKCS#1, is to choose d matching de ≡ 1 (mod

λ) with λ = lcm(p − 1, q − 1), where lcm is the least common multiple.

Using λ instead of φ(n) allows more choices for d. λ can also be defined

using the Carmichael function, λ(n).

 The ANSI X9.31 standard prescribes, IEEE 1363 describes,

and PKCS#1 allows, that p and q match additional requirements:

being strong primes, and being different enough that Fermat

factorization fails.

Encryption[edit]

Alice transmits her public key (n, e) to Bob and keeps the private key d secret.

Bob then wishes to send message M to Alice.

He first turns M into an integer m, such that 0 ≤ m < n by using an agreed-upon

reversible protocol known as a padding scheme. He then computes the

ciphertext ccorresponding to

This can be done efficiently, even for 500-bit numbers, using Modular

exponentiation. Bob then transmits c to Alice.

Note that at least nine values of m will yield a ciphertext c equal to m,[note

1] but this is very unlikely to occur in practice.

Decryption[edit]

Alice can recover m from c by using her private key exponent d via

computing

Given m, she can recover the original message M by reversing the

padding scheme.

(In practice, there are more efficient methods of calculating cd using the

precomputed values below.)

9 Vizhener's code

At each stage of enciphering various alphabets chosen depending on a keyword

symbol are used. For example, suppose, that the source text has an appearance:

ATTACKATDAWN

The person sending the message writes down a keyword ("LEMON")

cyclically until its length doesn't correspond to length of a source text:

LEMONLEMONLE

The first symbol of a source text of A is ciphered by sequence of L which is the

first symbol of a key. The first symbol of the L text in code is on crossing of a

line L and column A in Vizhener's table. In the same way for the second

symbol of a source text the second symbol of a key is used; that is the second

symbol of a text in code of X turns out on crossing of a line E and column T.

Other part of a source text is ciphered in the similar way.

Source text: ATTACKATDAWN

Key: LEMONLEMONLE

The ciphered text: LXFOPVEFRNHR

Deciphering is made as follows: we find the line corresponding to the first

symbol of a keyword in Vizhener's table; we find the first symbol of the

ciphered text in this line. The column in which there is this symbol,

corresponds to the first symbol of a source text. The following symbols of the

ciphered text are deciphered in this way.

If letters A — Z correspond to numbers 0 — 25, Vizhener's enciphering can be

written down in the form of a formula:

Interpretation:

10 Code Vernama

The cryptosystem was offered for enciphering of cable messages which

represented binary texts in which the clear text is represented in Baudot's code (in

the form of five-digit "pulse combinations"). In this code, for example, the letter

"A" had an appearance (1 1 0 0 0). On a paper tape to figure "1" there

corresponded the opening, and figure "0" — its absence

For work of a shifrotekst the clear text unites the operation "excluding OR" with

the key (called by a disposable notebook or shifrobloknoty). Thus the key has to

possess three crucial properties

To have distribution casual evenly: P_ {k} (k) =1/2^ {N}, where k — a key, and

N — quantity of binary symbols in a key;

To coincide by the size with the set clear text;

To be applied only once.

It is possible to unite not only bits of the message with key bits, but also, for

example, letters. Vernam's idea can be illustrated with attraction of the code of

Vizhener. The key for this code, according to Vernam, had to represent casual

sequence of letters.

EVTIQWXQVVOPMCXREPYZ key

ALLSWELLTHATENDSWELL clear text

Шифротекст EGEAMAIBOCOIQPAJATJK

Cryptographed message of EGEAM AIBOC OIQPA JATJK

Without knowledge of a key such message doesn't give in to the analysis. Even if

it would be possible to try all keys, as result we would receive all possible

messages of this length plus enormous number of the senseless decodings looking

as a chaotic heap of letters. But also among intelligent decodings there would be

no opportunity to choose the required. When the casual sequence (key) is

combined with not casual (in clear), the result of it (шифротекст) is absolutely

casual and, therefore, deprived of those statistical features which could be used for

the analysis of the code.

11 Codes of programs

Program code Viginer method

#include <vcl.h>
#pragma hdrstop
#include <string>
#include <string.h>
#include <math.h>
#include <vector>
#include "Unit2.h"
__fastcall TForm2::TForm2(TComponent* Owner)
 : TForm(Owner)
{
}
void __fastcall TForm2::EncodingClick(TObject *Sender)
{
 char alf[256];
 int LenA=256;
 int f_str=2, index_k=-1,p,z,ienk=0;
 const int len=Memo1->Text.Length();
 int *is= new int [len];
 int *ik= new int [len];
 char *str=new char[Memo1->Text.Length()];
 String enk="";
 strcpy (str, Memo1->Text.c_str());
 char *key=new char[Memo3->Text.Length()];
 strcpy (key, Memo3->Text.c_str());
 for(int i=0;i<256;i++)
 {alf[i]=(char)i;}
 for(int i=0; i<strlen(str); i++)
 for(int j=0; j<LenA; j++)
 if(str[i]==alf[j])

 {
 is[i]=j;
 }

 for(int i=0; i<strlen(key); i++)
 for(int j=0; j<LenA; j++)
 if(key[i]==alf[j])
 {
 ik[i]=j;
 }
 for(int i=0; i<strlen(str); i++)
 {
 z=is[i];p=ik[i%strlen(key)];
 if(z+p<LenA){
 enk+=alf[z+p];}
 else {
 enk+= alf[z+p-LenA];
 }
 }
 Memo2->Lines->Add(enk);
 }
#include <vcl.h>
#pragma hdrstop
#include <string>
#include <string.h>
#include <math.h>
#include "Unit3.h"
#pragma package(smart_init)
#pragma resource "*.dfm"
TForm3 *Form3;
__fastcall TForm3::TForm3(TComponent* Owner)
 : TForm(Owner)
{
}
void __fastcall TForm3::Button1Click(TObject *Sender)
{
 char alf[256];
 int LenA=26;

 int p,z;
 const int len=Memo1->Text.Length();
 int *is= new int [len];
 int *ik= new int [len];
 char *str=new char[Memo1->Text.Length()];
 String enk="";
 strcpy (str, Memo1->Text.c_str());
 char *key=new char[Memo3->Text.Length()];
 strcpy (key, Memo3->Text.c_str());

 for(int i=97;i<123;i++)
 {alf[i-97]=(char)i;}
 for(int i=0; i<strlen(str); i++)
 for(int j=0; j<LenA; j++)
 if(str[i]==alf[j])
 {
 is[i]=j;
 }
 for(int i=0; i<strlen(key); i++)
 for(int j=0; j<LenA; j++)
 if(key[i]==alf[j])
 {
 ik[i]=j;

 }
 for(int i=0; i<strlen(str); i++)
 {

 z=is[i];
 p=ik[i%strlen(key)];
 int q=fabs(p-z);
 Memo2->Lines->Add(q) ;
 if(fabs(z-p)>0){

 enk+=(alf[q]);}
 else {
 enk+=(alf[LenA-q]);
 }
 }

 Memo2->Lines->Add(enk);
 }
//---

Results of the program Viginer method
Encryption

Decryption

Program code Vernam

#include <vcl.h>
#include <iostream.h>
#include <iomanip>
#include <fstream>
#include<math.h>

#include <cstring.h>
#pragma hdrstop
#include "Unit1.h"
#pragma package(smart_init)
#pragma resource "*.dfm"
TForm1 *Form1;
__fastcall TForm1::TForm1(TComponent* Owner)
 : TForm(Owner)
{
}

void __fastcall TForm1::enter_the_keyChange(TObject *Sender)
{
 enter_the_key->Lines->SaveToFile("key.txt");
}
void __fastcall TForm1::Enter_the_text_to_encryptChange(TObject *Sender)
{
Enter_the_text_to_encrypt->Lines->SaveToFile("vaxid.txt");
}
void __fastcall TForm1::Button1Click(TObject *Sender)
{
 setlocale(LC_ALL, "rus");
 int flag=0;
 string chkey;
 char chtxt;
 char x[1000000],x1;
 int shk=0;
 int k=0;
 // открываем фаил откуда берем текст для шифра
 ifstream fin("vaxid.txt",ios::in|ios::binary);
 while(fin) { // в цикле считываем фаил до конца текста
 fin.get(chtxt);//считваем каждую букву
 char chkey1=chkey[shk];
 x1=chtxt^chkey1;
 x[k]=x1;
 k++;
 shk++;
 if (shk==chkey.size()){shk=0; } //проверяем размер ключа
 flag=1;
 }
 for(int i=0;i<k-1;i++)fout.put(x[i]); // занесем шифрованый текст в фаил 2
 fin.close();
 fout.close();
 if(flag=1)
 {

 Enter_the_text_for_interpretation->Lines->LoadFromFile("vaxid2.txt");
 The_text_is_encrypted->Visible=true;
 }
}
void __fastcall TForm1::Button2Click(TObject *Sender)
{
//ShellExecute(Handle, "open","2.exe",NULL,NULL,SW_RESTORE);
 setlocale(LC_ALL, "rus");
 int flag=0;
 string chkey;
 char chtxt;
 char x[1000000],x1;
 int shk=0;
 int k=0;
 // открываем фаил откуда берем текст для шифра
 ifstream fin("vaxid2.txt",ios::in|ios::binary);
 while(key) { // в цикле считываем key фаил
 key>>chkey;//считваем каждую букву
 }
 while(fin) { // в цикле считываем фаил до конца текста
 fin.get(chtxt);//считваем каждую букву
 char chkey1=chkey[shk];
 x1=chtxt^chkey1;
 x[k]=x1;
 k++;
 shk++;
 if (shk==chkey.size()){shk=0; } //проверяем размер ключа
 flag=1;
 }
 for(int i=0;i<k-1;i++)fout.put(x[i]); // занесем шифрованый текст в фаил 2

 fin.close();
 fout.close();

 if(flag=1){
 Enter_the_text_to_encrypt->Lines->LoadFromFile("vaxid3.txt");
 Decrypted_text->Visible=true;
 }
}
void __fastcall TForm1::Open11Click(TObject *Sender)
{
if (OpenDialog1->Execute()) Enter_the_text_for_interpretation->Lines-
>LoadFromFile(OpenDialog1->FileName);
}
void __fastcall TForm1::Open21Click(TObject *Sender)

{
if (OpenDialog2->Execute()) Enter_the_text_to_encrypt->Lines-
>LoadFromFile(OpenDialog2->FileName);
Results of the program Vernam
Encrept

Decript

Program code RSA

package rsa;

import java.security.NoSuchAlgorithmException;
import javax.crypto.NoSuchPaddingException;
public class RSA {

 public static void main(String[] args) throws NoSuchAlgorithmException,
NoSuchPaddingException {

 }

}
package rsa;

import java.awt.*;
import java.awt.event.*;
import java.io.*;
import java.math.BigInteger;
import java.security.*;
import java.security.spec.*;
import java.util.logging.*;
import javax.crypto.*;
import javax.swing.*;

public class RSA_1 extends JFrame implements ActionListener{
 public String dir_patch = "";
 JLabel l1,l2,l3;
 JTextArea t1,t2;
 JTextField tf1,tf2;
 JButton b1,b2,b3,b4,b5;
 public RSA_1(){
 setLayout(new BorderLayout());
 setBackground(Color.ORANGE);
 setSize(1000, 200);

 Panel panel = new Panel();
 panel.setLayout(new GridLayout());
 l1 = new JLabel("Plaintext...");
 l2 = new JLabel("Ciphertext...");
 panel.add(l1);
 panel.add(l2);
 this.add(panel, "North");

 Panel centerPanel = new Panel();
 centerPanel.setLayout(new GridLayout());
 t1 = new JTextArea();
 t2 = new JTextArea();
 t2.setBackground(Color.YELLOW);
 centerPanel.add(t1);
 centerPanel.add(t2);
 this.add(centerPanel, "Center");

 Panel southPanel = new Panel();

 southPanel.setLayout(new GridLayout(4,2));
 b3 = new JButton("Private key ");
 b3.addActionListener(this);
 b4 = new JButton("Public key ");
 b4.addActionListener(this);
 l3 = new JLabel("Press to generate keys: ");
 b5 = new JButton("Generate");
 b5.addActionListener(this);
 tf1 = new JTextField("");
 tf2 = new JTextField("");
 b1 = new JButton("Encrypt");
 b1.addActionListener(this);
 b2 = new JButton("Dencrypt");
 b2.addActionListener(this);
 southPanel.add(b3);
 southPanel.add(b4);
 southPanel.add(l3);
 southPanel.add(b5);
 southPanel.add(tf1);
 southPanel.add(tf2);
 southPanel.add(b1);
 southPanel.add(b2);
 this.add(southPanel, "South");

 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 setLocationRelativeTo(null);
 setVisible(true);
 }

 @Override
 public void actionPerformed(ActionEvent e) {
 JButton button = (JButton) e.getSource();
 if (button==b1) {try {
 RSAencrypt rsac = new RSAencrypt();
 try {
 try {
 t2.setText(rsac.RSAencrypt(t1.getText(), tf1.getText()));
 } catch (UnsupportedEncodingException ex) {

Logger.getLogger(RSA_1.class.getName()).log(Level.CONFIG, null, ex);
 }
 } catch (InvalidKeyException ex) {

Logger.getLogger(RSA_1.class.getName()).log(Level.SEVERE, null, ex);
 } catch (IllegalBlockSizeException ex) {

Logger.getLogger(RSA_1.class.getName()).log(Level.SEVERE, null, ex);
 } catch (BadPaddingException ex) {

Logger.getLogger(RSA_1.class.getName()).log(Level.SEVERE, null, ex);
 } catch (FileNotFoundException ex) {

Logger.getLogger(RSA_1.class.getName()).log(Level.SEVERE, null, ex);
 } catch (InvalidKeySpecException ex) {

Logger.getLogger(RSA_1.class.getName()).log(Level.SEVERE, null, ex);
 }
 } catch (NoSuchAlgorithmException ex) {
 Logger.getLogger(RSA_1.class.getName()).log(Level.SEVERE,
null, ex);
 } catch (NoSuchPaddingException ex) {
 Logger.getLogger(RSA_1.class.getName()).log(Level.SEVERE,
null, ex);
 }
}
 else if (button==b2) {try {
 RSAencrypt rsac = new RSAencrypt();
 try {
 try {
 t2.setText(rsac.RSAdecrypt(t1.getText(), tf2.getText()));
 } catch (UnsupportedEncodingException ex) {

Logger.getLogger(RSA_1.class.getName()).log(Level.SEVERE, null, ex);
 }
 } catch (InvalidKeyException ex) {

Logger.getLogger(RSA_1.class.getName()).log(Level.SEVERE, null, ex);

 } catch (IllegalBlockSizeException ex) {

Logger.getLogger(RSA_1.class.getName()).log(Level.SEVERE, null, ex);
 } catch (BadPaddingException ex) {

Logger.getLogger(RSA_1.class.getName()).log(Level.SEVERE, null, ex);
 } catch (FileNotFoundException ex) {

Logger.getLogger(RSA_1.class.getName()).log(Level.SEVERE, null, ex);
 } catch (InvalidKeySpecException ex) {

Logger.getLogger(RSA_1.class.getName()).log(Level.SEVERE, null, ex);
 }
 } catch (NoSuchAlgorithmException ex) {
 Logger.getLogger(RSA_1.class.getName()).log(Level.SEVERE,
null, ex);
 } catch (NoSuchPaddingException ex) {
 Logger.getLogger(RSA_1.class.getName()).log(Level.SEVERE,
null, ex);
 }
 }
 else if (button==b3) {getfile();tf1.setText(dir_patch);}
 else if (button==b4) {getfile();tf2.setText(dir_patch);}
 else if (button==b5) {try {
 try {
 generateKeys(tf1.getText(), tf2.getText());
 } catch (FileNotFoundException ex) {

Logger.getLogger(RSA_1.class.getName()).log(Level.SEVERE, null, ex);
 } catch (IOException ex) {

Logger.getLogger(RSA_1.class.getName()).log(Level.SEVERE, null, ex);
 }
 } catch (NoSuchAlgorithmException ex) {
 Logger.getLogger(RSA_1.class.getName()).log(Level.SEVERE,
null, ex);
 } catch (InvalidKeySpecException ex) {
 Logger.getLogger(RSA_1.class.getName()).log(Level.SEVERE,
null, ex);

 }
 }
 }

 public void getfile(){
 JFileChooser fileChooser = new JFileChooser();

fileChooser.setFileSelectionMode(JFileChooser.FILES_AND_DIRECTORI
ES);
 int ret = fileChooser.showDialog(this, "Open");
 String patch = null;
 if (ret == JFileChooser.APPROVE_OPTION)
 {
 patch = fileChooser.getSelectedFile().getAbsolutePath();
 dir_patch = patch;
 final File folder = new File(patch);
 }
 }
 public void generateKeys(String publicFile,String privateFile) throws
NoSuchAlgorithmException, InvalidKeySpecException,
FileNotFoundException, IOException{
 KeyPairGenerator keyPairGen =
KeyPairGenerator.getInstance("RSA");
 KeyPair keyPair = keyPairGen.generateKeyPair();
PrivateKey privateKey = keyPair.getPrivate();
PublicKey publicKey = keyPair.getPublic();

KeyFactory keyFactory = KeyFactory.getInstance("RSA");
RSAPrivateKeySpec rSAPrivateKey = keyFactory.getKeySpec(privateKey,
RSAPrivateKeySpec.class);

BigInteger pr_m = rSAPrivateKey.getModulus();
BigInteger pr_x = rSAPrivateKey.getPrivateExponent();

RSAPublicKeySpec rsaPublicKey = keyFactory.getKeySpec(publicKey,
RSAPublicKeySpec.class);

BigInteger pub_m = rsaPublicKey.getModulus();
BigInteger pub_x = rsaPublicKey.getPublicExponent();

String pubf = "keys/"+tf1.getText()+".txt";
String prf = "keys/"+tf2.getText()+".txt";

File publicKeyFile = new File(pubf);
File privateKeyFile = new File(prf);

FileOutputStream f1 = null;
FileOutputStream f2 = null;

f1 = new FileOutputStream(publicKeyFile);
f2 = new FileOutputStream(privateKeyFile);

f1.write(pub_m.toString().getBytes());
f1.write(" ".getBytes());
f1.write(pub_x.toString().getBytes());

f2.write(pr_m.toString().getBytes());
f2.write(" ".getBytes());
f2.write(pr_x.toString().getBytes());

tf1.setText(pubf);
tf2.setText(prf);
 }
}

package rsa;

import com.sun.org.apache.xerces.internal.impl.dv.util.Base64;
import java.io.*;
import java.math.BigInteger;
import java.security.*;
import java.security.spec.*;
import java.util.Scanner;
import javax.crypto.*;
class RSAencrypt{
 Cipher c;
 RSAencrypt() throws NoSuchAlgorithmException,
NoSuchPaddingException{

 c = Cipher.getInstance("RSA");
 }
public String RSAencrypt(String plaintext, String file) throws
InvalidKeyException, IllegalBlockSizeException, BadPaddingException,
FileNotFoundException, NoSuchAlgorithmException,
InvalidKeySpecException, UnsupportedEncodingException{
int k = 0;
Scanner reader = new Scanner(new File(file));
String[] str = new String[2];
while (reader.hasNext()){
 str[k] = reader.next();k++;
}

BigInteger pub_m = new BigInteger(str[0]);
BigInteger pub_x = new BigInteger(str[1]);

KeyFactory keyFactory = KeyFactory.getInstance("RSA");
RSAPublicKeySpec new_pubks = new RSAPublicKeySpec(pub_m, pub_x);
PublicKey new_public = keyFactory.generatePublic(new_pubks);

c.init(Cipher.ENCRYPT_MODE, new_public);
byte[] encrypted = c.doFinal(plaintext.getBytes("utf8"));

String result = Base64.encode(encrypted);
return result;
}

public String RSAdecrypt(String ciphertext, String file) throws
FileNotFoundException, NoSuchAlgorithmException,
InvalidKeySpecException, InvalidKeyException,
IllegalBlockSizeException, BadPaddingException,
UnsupportedEncodingException{
int k = 0;
Scanner reader = new Scanner(new File(file));
String[] str = new String[2];
while (reader.hasNext()){
 str[k] = reader.next();k++;
}

BigInteger pr_m = new BigInteger(str[0]);
BigInteger pr_x = new BigInteger(str[1]);

KeyFactory keyFactory = KeyFactory.getInstance("RSA");
RSAPrivateKeySpec new_prks = new RSAPrivateKeySpec(pr_m, pr_x);
PrivateKey new_private = keyFactory.generatePrivate(new_prks);

 byte[] data1=Base64.decode(ciphertext);
 c.init(Cipher.DECRYPT_MODE, new_private);
 byte[] decrypted = c.doFinal(data1);

 String result = new String(decrypted);
 return result;
}
}

Results of the program RSA
Encrypt

Decrypt

The list of the used literature
https://ru.wikipedia.org/wiki/Шифр_Вернама
https://ru.wikipedia.org/wiki/Шифр_Виженера
http://en.wikipedia.org/wiki/Euler's_totient_function
https://ru.wikipedia.org/wiki/RSA
http://citforum.ru/book/cryptogr/fullsoder.shtml

