Министерство высшего и среднего специального образования Республики Узбекистан

Ташкентский государственный технический университет им. Беруни

Сборник

практических работ по курсу «Горные машины»

Ташкент - 2007

Сборник практических работ по курсу «Горные машины» Сост: А.М. Исаходжаев, О.Х. Абдиев, Ташкент: ТашГТУ2007;

Настоящий сборник практических работ составлен в соответствии с программой курса «Горные машины» для студентов бакалавриата направления 5521400 – «Горная электромеханика» и для курса «Горные машины и оборудования» для студентов бакалавриата направления 5540200 «Горное дело». В сборнике приводятся краткие теоретические сведения расчета основных показателей соответствующих горных машин и пример расчета показателей этой машины

Кафедра «Горная электромеханика»

Печатается по решению научно-методического совета Ташкентского государственного технического университета

Рецензенты:

проф. А.А.Юсупходжаев (ТашГТУ)

Стар. преп.

А. Махкамов (Ташкентский политехнический колледж)

Производительность бурильных машин вращательного бурения

Техническая производительность, т.е. сколько шпурометров может быть пробурено установкой за 1 час непрерывной работы:

$$Q_{\it mexh} = rac{60}{t_{\it бур} + t_{\it всn}} = rac{60}{rac{1}{K_{\it onv}} + (t_{\it мah} + t_{\it o.x} + t_{\it \kappa})}$$
 , шпурометров/час (1)

где $t_{\it бур}$ и $t_{\it всn}$ - чистое время бурения и вспомогательное техническое время, необходимое для выбуривания 1 шпурометра, мин;

n - число одновременно буримых шпуров;

 K_0 - коэффициент одновременности бурения (при n=2 $K_0=0,7$);

v - скорость бурения породы (расчетная), м/мин;

 $t_{\text{ман}}$, $t_{\text{o.x}}$ и $t_{\text{к}}$ - затраты времени при выбуривании 1 шпурометра на перестановку бурильных машин (маневры), обратный ход бурильной головки и замену коронки, мин.

Эксплуатационная или действительная сменная производительность бурильной установки с учетом затрат времени на подготовительно — заключительные операции и простои по организационным и техническим причинам может быть определена по формуле

$$Q_{_{\Im}}=rac{60T-(t_{_{n.3}}+t_{^{1}_{n.3}}+t_{_{om\partial}}+t_{_{B3p}})}{60Q_{_{mexh}}}$$
, шпурометров/смену (2)

где T - продолжительность смены, час;

 $t_{n.3}, t_{n.3}^1, t_{omo}, t_{esp}$, - время, затрачиваемое в течение смены на подготовительно — заключительные операции (общие и в

процессе бурения), отдых проходчиков и технологический перерыв на взрывные работы; может приниматься соответственно равным 2,5; 9; 10 и 12% длительности смены, мин.

Пример

расчёта производительности бурильной машины БКГ-2 вращательного действия

Дано: коэффициент крепости породы f = 8-9;

Чистое время бурения 1 шпурометра $t_{\delta vp}$ =1час;

Число одновременно буримых шпуров n=2

Коэффициент одновременности бурения $K_0 = 0.7$;

Расчетная скорость буренияv = 3,6м/мин;

Затраты времени на маневры обратного

хода и на замену коронки соответственно $t_{\text{ман}} = 40$ мин;

$$t_{o.x.} = 0,5$$
 мин; $t_{\kappa} = 4$ мин.

Пользуясь формулой (1) и (2), находим техническую и эксплуатационную производительность

$$Q_{mex} = \frac{60}{\frac{1}{0.7 \cdot 2 \cdot 3.6} + (40 + 0.5 + 4)} = 1,3$$
 шпурометров/час.

Принимая: - продолжительность смены T = 7 час;

- время, затрачиваемое в течение смены на общие подготовительно-заключительные операции $t_{n,3}$ =2,5 мин;
- время, затрачиваемое в процессе бурения на подготовительнозаключительные операции $t^1_{n,s}$ = 9 мин;
 - время, затрачиваемое на отдых проходчиков t_{omd} =10 мин;
- время, затрачиваемое на взрывные работы $t_{\it esp}$ = 50,4 мин; определяем эксплуатационную производительность

$$Q_{_{9}} = \frac{60 \cdot 7 - (2,5+9+10+50,4)}{60 \cdot 1,3} = 4,46 \text{ M/cMeHy}.$$

Производительность выёмочных комплексов

Производительность выёмочных комплексов (агрегатов) зависит от целого ряда факторов и, в первую очередь, от горно-геологических и горнотехнических условий их работы, режимных и конструктивных параметров функциональных машин и степени их использования во времени. Поэтому применительно к выемочным комплексам и агрегатам необходимо различать теоретическую, техническую и эксплуатационную производительность.

Теоретическая производительность

Теоретическая производительность комплекса (агрегата) является максимальной, так как определяется в единицу времени непрерывной производительной работы с рабочими параметрами, максимальными для данных условий эксплуатации и определяется по формуле:

$$Q_{mcop}=60m\cdot Bv_{n}\gamma$$
; т/час, (3)

где m - средняя мощность пласта, м;

 ${\it B}\,$ - ширина захвата массива угля исполнительным органом, м;

 v_n - скорость подачи выемочной машины вдоль забоя, м/мин;

 γ - плотность угля, т/м³.

По теоретической производительности выемочного комплекса или агрегата, найденной по приведенной выше формуле (3) выбирается оборудование всей технологической цепи от выёмочного забоя до главной транспортной магистрали.

Техническая производительность

Техническая производительность выемочного комплекса (агрегата) – максимально возможная среднечасовая его производительность при работе в конкретных условиях эксплуатации. Техническая производительность определяется количеством добытого угля в единицу времени с учетом перерывов на выполнение неизбежных вспомогательных операций, присуших данному комплексу.

К ним относятся маневровые концевые операции, замена рабочего инструмента, устранение технических неполадок.

Техническая производительность определяется из уравнения

$$Q_{mex} = Q_{meop} K_m$$
, т/час, (4)

где K_{m} <1 - коэффициент технически возможной непрерывности работы комплекса (агрегата).

Имея в виду (3) получим

$$Q_{mex} = 60mBv_n \gamma \cdot K_m, \text{ T/vac,}$$
 (5)

Коэффициент технически возможной непрерывности работь определяется по формуле

$$K_m = \frac{T_{\scriptscriptstyle M}}{T_{\scriptscriptstyle M} + T_{\scriptscriptstyle DD}}, \tag{6}$$

где $T_{_{\mathcal{M}}}$ - время производительной работы выемочной машины комплекса, мин;

 $T_{\it np}$ - время на несовмещенные с работой исполнительного органа вспомогательные операции, присущие комплексу, мин.

$$T_{_{\mathcal{M}}} = \frac{L}{v_{_{n}}}$$
, мин. (7)

L – длина лавы, м.

$$T_{np} = T_{M.O.} + T_{\kappa.O.} + T_{3.u.} + T_{v.H.}$$
, muh (8)

где $T_{\scriptscriptstyle M.o.}$ - затраты времени на несовмещенные маневровые операции в течение цикла, мин;

- при челноковой схеме работы с цепным тяговом органом $T_{_{M,O}}=0$;

- при односторонней работе с цепным тяговым органом $T_{_{M.o.}} = \frac{L}{v_{_{n}}}$,

мин;

 $T_{\kappa.o.}$ - затраты времени на несовмещенные концевые операции (перемонтаж погрузочного щитка, передвижка приводных и натяжных станции конвейера, смазку и прочие), мин;

По хронометражным данным $T_{\kappa o} = 30$ мин;

 $T_{3\mu}$ - затраты времени на замену инструмента, мин

При известном удельном расходе рабочего инструмента время на его замену может быть подсчитано по формуле

$$T_{_{3.u.}} = L \cdot m \cdot B \cdot \gamma \cdot Z \cdot t_{_p}, \qquad (9)$$

где L - длина лавы, м;

m - средняя мощность пласта, м;

B - ширина захвата, м;

 γ - плотность угля, т/м³;

Z - удельный расход резцов, шт/т;

 t_{n} - время на замену одного резца, мин.

Удельный расход инструмента зависит от его стойкости, а также от крепости и абразивности угольного пласта. Для наиболее распространенных резцов, армированных твердым сплавом, их расход при работе на мягких углях $(f=0.7\div 1.0)$ составляет $z=0.005-0.01\,\mathrm{mt/t}$, углях средней крепости $(f=1.0\div 1.5)$ z=0.010-0.10 $\mathrm{mt/t}$, крепких и весьма крепких углях (f=20 и более) z=0.10-0.25 $\mathrm{mt/t}$.

 $T_{y.m.}$ -затраты времени на устранение неисправностей в работе комплекса или агрегата могут быть выражены в общем виде формулой

$$T_{y.n.} = \frac{L}{v_n} (\frac{1}{K_u} - 1),$$
 (10)

где $v_{\scriptscriptstyle n}$ - скорость подачи комбайна вдоль забоя м/мин;

 $K_{_{_{\!\it H}}}$ - коэффициент надежности комбайна, для комбайна 1К-101 $K_{_{\it H}}=0.8\div0.9$

Эксплуатационная производительность

Эксплуатационная производительность зависит от степени использования технической возможности агрегата в конкретных условиях эксплуатации.

Эксплуатационная производительность определяется с учетом затрат времени также на организационные и технические неполадки, не зависящие от конструкции комплекса и его схемы работы, т.е.

$$Q_{2} = Q_{meon} \cdot K_{2} \tag{11}$$

где $K_{_{\odot}}$ - коэффициент непрерывности работы комбайна в процессе эксплуатации в конкретных условиях забоя;

$$K_{_{9}} = \frac{T}{T + T_{np} + T_{_{9.0.}}},$$
 (12)

где $T_{\scriptscriptstyle 9.0.}$ - затраты времени на эксплуатационные операции, зависящие от организационно-технических неувязок и условий эксплуатации, мин.

К ним относятся затраты времени на обмен вагонеток на погрузочном пункте; ожидание порожняка, электроэнергии, задержку в закреплении забоя, устранение вывалов породы и т.д.

Примерно можно принимать $T_{30} = 270 - 580$ мин. на цикл.

Производительность врубовых машин определяется аналогично, учитывая, однако, то обстоятельство, что она измеряется в квадратных метрах пласта, подрубленного в единицу времени, а под шириной захвата при этом понимается полезная глубина вруба.

Пример

расчета производительности узкозахватного добычного комбайна 1K-101

Исходные данные:

Мощность пласта m = 1,0 м;

Ширина захвата B = 0.8 м;

Длина лавы $L=210\,$ м;

Скорость перемещения комбайна $v_n = 3.0$ м/мин;

Плотность угля $\gamma = 1,3$ т/м³;

Удельный расход резцов z = 0.1 шт/т;

Время замены одного резца $t_p = 1,0$ мин;

Теоретическая производительность (3)

$$Q_{meop} = 60 mBv_n \gamma = 60 \cdot 1,0 \cdot 0,8 \cdot 3,0 \cdot 1,3 = 187$$
 т/час

Техническая производительность (4)

$$Q_{mex} = Q_{meon} \cdot K_m$$
 T/4ac

$$\text{VI3 (6)} \ \ K_{_{m}} = \frac{T_{_{_{M}}}}{T_{_{_{M}}} + T_{_{np}}} \, ;$$

$$T_{_{M}} = \frac{L}{v_{_{-}}} = \frac{210}{3.0} = 70$$
 мин.

Из выражения (8) $T_{np} = T_{{\scriptscriptstyle M.O.}} + T_{{\scriptscriptstyle K.O.}} + T_{{\scriptscriptstyle 3.u.}} + T_{{\scriptscriptstyle y.h.}}$

 $T_{\scriptscriptstyle M.o.}$ - при челноковой схеме работы $T_{\scriptscriptstyle M.o.}$ =0

 $T_{\kappa.o.}$ =30 мин – по хронометражным данным.

 $T_{_{3.u.}} = LmB$ уz $t_p = 210 \cdot 1,0 \cdot 0,8 \cdot 1,3 \cdot 0,1 \cdot 1,0 = 22$ мин

$$T_{y.h} = t_m (\frac{1}{K_h} - 1) = \frac{L}{v_n} (\frac{1}{K_h} - 1);$$

Для комбайна 1К-101 $K_{_{\scriptscriptstyle H}}=0.8\div0.9\,,$ принимаем $K_{_{\scriptscriptstyle H}}=0.9\,;$ $T_{_{\scriptscriptstyle M}}=0$

$$T_{y.n} = \frac{210}{3.0} (\frac{1}{0.8} - 1) = 17,5$$
 muh

$$T_{nn} = 70 + 0 + 30 + 22 + 17,5 = 139,5$$
 muh;

$$K_m = \frac{70}{70 + 0 + 30 + 22 + 17.5} = 0,52$$

Из выражения (5)

$$Q_{mex} = 187 \cdot 0,52 = 97,2$$
 т/час.

Эксплуатационная производительность

$$Q_{\scriptscriptstyle 9} = Q_{\scriptscriptstyle meop} * K_{\scriptscriptstyle 9}$$
; т/час; принимая $T_{\scriptscriptstyle 9.0} = 500$ мин определяем:

$$K_{9} = \frac{T}{T + T_{np} + T_{9.0}} = \frac{720}{720 + 139,5 + 520} = \frac{720}{1359,5} = 0,50$$

$$Q_3 = 187 \cdot 0.50 = 93.5$$
 T/4ac

В результате расчета получена

$$Q_{meop} \rangle Q_{mex} \rangle Q_{\scriptscriptstyle 9}$$
 T.e. 187>97,2>93,5.

Производительность струговой установки

Теоретическая (расчетная) производительность струговой установки определяется по выражению

$$Q_{meop} = 60 \cdot H \cdot h \cdot v \cdot \gamma, \text{ T/vac}, \tag{13}$$

где H - мощность вынимаемого пласта, м;

h - толщина среза, м;

v - скорость резания струга, м/мин;

 γ - плотность вынимаемого пласта, т/ м³

Техническая производительность струговой установки определяется по выражению

$$Q_{mex} = Q_{meop} \cdot K_m$$
, т/час, (14)

где K_m - коэффициент технического совершенства установки $(K_m < 1)$, характеризующий возможность её непрерывной работы

$$K_{m} = \frac{1}{1 + \frac{T_{\kappa.o.} + T_{n.o} + T_{y.n.}}{T}};$$
(15)

где $T_{\kappa,o}$ - затраты времени на концевые операции, определяемые хронометражом.

 $T_{\scriptscriptstyle H.O}$ - затраты времени на операции, несовмещенные с работой струга (замена резцов и пр) и определяемые

$$T_{\text{н.о.}} = HhL\gamma zt_p$$
, мин/цикл; (16)

где L - длина лавы, м;

z - удельный расход резцов, штук/тонну;

 t_{p} - время замены одного резца, мин;

 $T_{_{y.n}}$ - затраты времени на устранение неполадок, мин, определяется по выражению

$$T_{y.u.} = T(\frac{1}{K_{z.u}} - 1)$$
, мин/цикл,

Т – время съема среза за один проход струга (цикл)

$$T = \frac{L}{v}$$
, мин,

 $K_{_{9,H}}$ - коэффициент эксплуатационной надежности струговой установки.

Эксплуатационная производительность струга.

$$Q_{\scriptscriptstyle 9} = Q_{\scriptscriptstyle mex} \cdot K_{\scriptscriptstyle 9} , \text{ т/час} \tag{17}$$

 $K_{_{\scriptscriptstyle 9}}$ - коэффициент непрерывности работы струга. Принимается на основе хронометражных наблюдений.

Мощность привода струговой установки

Мощность привода струговой установки определяется двумя методами: по эмпирическим формулам и силовым методом.

1) Энергический метод определения мощности привода струга

$$P = 3600 \cdot vhHq$$
, KBT

где v - скорость перемещения струга, м/с;

h - толщина среза угля, м;

Н - мощность вынимаемого пласта, м;

q - удельный расход электроэнергии, кВт.час/м³.

Удельный расход электроэнергии определяется эмпирическим методом и составляет примерно q=0.15-0.6 кВт.час/м 3 , он зависит от сопротивляемости угля резанию, параметров среза (высоты, толщины среза), конструкции струга и от других факторов.

2) Силовой метод определения мощности привода струга

$$P = \frac{Fv}{102 \cdot \eta_{vem}}, \text{ kBT}; \tag{19}$$

где F - тяговое усилие при рабочем ходе струга, кгс;

v - скорость перемещения струга, м/с;

 $\eta_{{\scriptscriptstyle ycm}}$ - коэффициент полезного действия (КПД) установки.

$$\eta_{vcm} = \eta_{Mex} \cdot \eta_{\partial \theta};$$

 $\eta_{\mbox{\tiny{Mex}}}$ - КПД механической передачи;

 $\eta_{\partial s}$ - КПД электродвигателя

Мощность привода струговой установки может быть определена также из выражения

$$P = P_o + ah$$
, кВт (20)

где P_o - мощность привода, необходимая для перемещения струга вхолостую, кВт;

а – коэффициент, зависящий от сопротивляемости угля резанию, геометрических параметров резца, его состояния,

скорости струга и других факторов, устанавливается опытным путем.

Пример

определения производительности струговой установки

Исходные данные:

Длина лавы L = 200 м;

Мощность вынимаемого пласта угля Н=1,0 м;

Толщина среза h = 0,1 м;

Объемный вес угля $\gamma = 1,4 \text{ т/м}^3$;

Скорость резания угля v = 0.6 м/с = 36 м/мин;

Коэффициент экономической надежности К₃=0,8

Удельный расход резцов $z = 0.001 \, \text{шт/т}$;

Время замены одного резца t_p =4 мин.

Время съема среза за один проход струга

$$T = \frac{L}{v} = \frac{200}{36} = 5.5$$
 MUH,

Теоретическая производительность (13) струговой установки $Q_{mean} = 60 Hhv\gamma = 60 \cdot 1,0 \cdot 0,1 \cdot 36 \cdot 1,4 = 302$ т/час,

Техническая производительность струговой установки (14)

$$Q_{mex} = Q_{meop} \cdot K_m$$
; т/час
$$K_m = \frac{1}{1 + \frac{T_{\kappa.o} + T_{\nu.o} + T_{\nu.u}}{T}};$$

Принимаем $T_{\kappa o} = 0.2$ мин/цикл

$$T_{\scriptscriptstyle H.O} = HhL\gamma zt_{\scriptscriptstyle
ho}$$
 , мин

Принимаем $z = 0.001 \, \text{шт/т}$;

$$t_{\rho}=4 \text{ мин}$$

$$T_{\scriptscriptstyle H.O}=1,0\cdot0,1\cdot200\cdot1,4\cdot0,001\cdot4=0,112 \text{ мин/цикл.}$$

$$T_{\scriptscriptstyle y.H}=T(\frac{1}{K_{\scriptscriptstyle 9H}}-1)=5,5(\frac{1}{0,8}-1)=1,37 \text{ мин/цикл.}$$

$$K_{\scriptscriptstyle m}=\frac{1}{1+\frac{0,2+0,112+1,37}{5.5}}=0,77 \ ;$$

$$Q_{mex} = 302 \cdot 0,77 = 232$$
 т/час.

Эксплуатационная производительность струговой установки (17)

$$Q_{\scriptscriptstyle 9} = Q_{\scriptscriptstyle mex} \cdot K_{\scriptscriptstyle 9}$$
 т/час.

Принимаем $K_{3} = 0.8$;

$$Q_9 = 232 \cdot 0.8 = 185.6$$
 T/4ac.

В результате расчета получены $Q_{\it meop}$ =302 т/час

$$Q_{mex}$$
 =232 т/час,

$$Q_{3}$$
 =185,6 т/час,

где $Q_{meop}
angle Q_{mex}
angle Q_{ ext{ iny }}$

Пример расчета мощности привода струговой установки

1. Энергетический метод определения мощности привода струговой установки (18)

$$P = 3600vhHq$$
, кВт,

Принимаем $q = 0.38 \text{ кВт.час/м}^3$

$$P = 3600 \cdot 0.613 \cdot 0.15 \cdot 1.0 \cdot 0.38 = 125.7$$
 кВт.

2. Силовой метод определения мощности в приводе струговой установки (19)

$$P = \frac{Fv}{102 \cdot \eta_{_{VCm}}}$$
 , кВт.

Принимаем $F \approx 15000$ кгс;

$$\eta_{ycm} = 0{,}60\,,$$

$$P = \frac{15000 \cdot 0613}{102 \cdot 0{,}60} = 150{,}2 \;\; \mathrm{кВт}$$

Мощность привода струговой установки по выражению (20)

$$P = P_o + ah$$
, KBT;

Принимаем $P_o = 30$ кВт.

a=900.

$$P = 30 + 900 \cdot 0.1 = 120$$
 кВт.

Производительность проходческих комбайнов

Производительность проходческого комбайна зависит от типа исполнительного органа, конструктивных и режимных параметров комбайна, горно-геологических условий его работы, организации работ в забое и других факторов.

Теоретическая производительность проходческого комбайна с исполнительным органом бурового действия определяется по формуле:

$$Q_{meop}\!=\!3600S\cdot v_{_{M\!A\!X}}\gamma \text{ , T/час}$$
 или $\Pi_{meop}=\frac{Q_{_{m}}}{S\gamma}=3600v_{_{M\!A\!X}},$ м/час, (21)

где S - сечение проводимой выработки, м 2 ;

 $v_{\text{мах}}$ - максимальная скорость подачи комбайна, м/сек;

 γ - плотность породы в массиве, т/м³.

Теоретическая производительность проходческого комбайна избирательного (цикличного) действия определяется по формуле.

$$Q_{meop} = 3600 mB v_{n.max} \gamma$$
 , T/4ac

или
$$\Pi_{meop} = \frac{Q_{meop}}{S\gamma} = 3600 \frac{mB}{S} v_{n.\,\mathrm{max}}$$
 , м/час. (22)

где m - высота или ширина (мощность) разрушаемого слоя, м:

Для конусных исполнительных органов $m = 0.5d_k$, м;

 $d_{\scriptscriptstyle k}$ - средний диаметр конической коронки, м.

B - максимальная величина захвата исполнительного органа, м;

 $v_{n.{
m max}}$ -максимальная возможная скорость поперечной подачи исполнительного органа, м/сек.

Техническая производительность проходческого комбайна с исполнительным органом бурового действия определяется

$$Q_{mex} = 3600 S v_{n.max} \gamma K_{mex.\delta.}$$
 T/yac

или
$$\Pi_{mex} = 3600 v_{n,max} K_{mex.\delta.}$$
, м/час. (23)

где $K_{\mathit{mex.6.}}$ - коэффициент использования комбайна во времени обычно $K_{\mathit{mex.6.}}=0,3\text{-}0,4.$

Техническая производительность проходческого комбайна избирательного (цикличного) действия определяют по формуле:

$$Q_{\it mex} = 3600 m B v_{\it n. max} \gamma K_{\it mex. \emph{o}}$$
 , т/час

$$\Pi_{\textit{mex}} = \frac{Q_{\textit{meop}}}{S\gamma} K_{\textit{mex.6.}} = 3600 \frac{mB}{S} v_{\textit{n.max}} K_{\textit{mex.6.}}$$
, м/час. (24)

Эксплуатационная производительность соответственно определяется по формуле

$$Q_{_9}=Q_{mex}K_{_9}\,,\ \, \text{т/час},$$
 или $\Pi_{_2}=\Pi_{mex}K_{_3}\,,$ м/час. (25)

 $K_{\rm s}$ - коэффициент, учитывающий всех простоев комбайна $K_{\rm s} \approx 0.3\text{-}0.6$

Пример

расчета усилий резания и подачи проходческого комбайна УПП-2.

Определить значения усилий резания и подачи на одном резце коронки комбайна 4ПП-2, необходимых для обеспечения заданной средней толщины стружки $h=20\,$ мм в породах с $f=5\,$. Определить также удельную энергоёмкость разрушения пород. Шаг резания $t=30\,$ мм, резцы РКС-2 (Кр=1,1), предельно допустимая величина проекции площадки затупления резца $S_3=20\,$ мм 2 .

Определяем контактную прочность породы

$$P_{\kappa} = 44 f^{1.5} = 44 \cdot 5^{1.5} = 490$$
 МПа (49 кгс/мм²)

Усилия резания и подачи, действующие на один острый резец:

$$Z_0 = P_{\kappa} K_{con}(0.25 + 0.018th); H,$$

$$y_0 = z_0$$
, H

где y_0, z_0 - силы резания и подачи на одном остром резце, H (кгс)

 P_{κ} -контактная прочность пород, МПа (кгс/мм²);

 K_{cm} - коэффициент, учитывающий влияние угла резания, K_{cm} =1,1;

h, t -средние значения толщины стружки и шага резания, мм;

$$h=20\,{\rm MM},\ \ t=30\,{\rm MM}$$

$$Z_0=490\cdot 1, 1(0,25+0,018\cdot 30\cdot 20)=5820\ \ {\rm H\ (582\ krc)};$$

$$y_0 = z_0 = 5820 \text{ H (582 krc)}.$$

Усилия резания и подачи, действующие на один затупленный резец:

$$z = z_0 + 0.25 \mu_P P_K S_3$$
; H;
 $y = y_0 + 0.25 P_K S_3$; H;

где $\mu_{\rm p}$ - коэффициент сопротивления резанию принимают равным $\mu_{\rm p}\!=\!0,4$

 $P_{\scriptscriptstyle
m K}$ - контактная прочность породы

 S_3 - величина проекции площадки затупления резца $S_3 = 15 - 20 \text{ мм}^2$.

Принимаем $S_3 = 20 \text{ мм}^2$.

$$z = 5820 + 0.25 \cdot 0.4 \cdot 490 \cdot 20 = 6800 \text{ H (680 кгс)};$$

 $y = 5820 + 0.25 \cdot 490 \cdot 20 = 8270 \text{ H (827 кгс)}$

Удельная энергоёмкость разрушения породы с f=5 острым и затупленным резцом.

$$H_{\scriptscriptstyle ow} = rac{z_0}{th}$$
 , МДж/м 3 $H_{\scriptscriptstyle w} = rac{z}{th}$, МДж/м 3

где t - шаг разрушения, мм, t =30 мм;

h - средняя толщина стружки, мм, h =20 мм.

$$H_{\scriptscriptstyle ow} = \frac{5820}{30 \cdot 20} = 9,7$$
, МДж/м³ $H_{\scriptscriptstyle W} = \frac{6800}{30 \cdot 20} = 11,3$, МДж/м³

расчета по величине среднего усилия перекатывания действующего на одиночную дисковую шарошку исполнительного органа комбайна 4ПП-2 глубину разрушения пород с f=10, необходимое напорное усилие, а также удельную энергоёмкость разрушения. Радиус скругления рабочей кромки диска $\rho=2$ мм, угол заострения рабочей кромки $\beta=60^{\circ}$, максимальный диаметр диска Дш=360 мм, шаг разрушения t=42 мм, усилие перекатывания $Z^1=7960$ H (796 кгс).

Контактная прочность породы

$$P_{\kappa} = 44 f^{1.5} = 1390 \text{ МПа (139 кгс/мм²)}$$

Усилие перекатывания z и подачи y, н (кгс), при разрушении пород спаренной дисковой шарошкой определяется по выражениям.

$$\begin{split} z &= 0.51e^{0.021t}(0.19h + 0.24)(0.22\rho + 0.78)(0.0068\beta + 0.73)(8.9\rho_{\kappa}^{2} + C_{1}); H(\kappa \varepsilon) \\ y &= 0.51e^{0.021t}(0.17h + 0.32)(0.22\rho + 0.78)(0.0068\beta + 0.73)(0.0035\mathcal{I}_{uu} + 0.64)(43.5\rho_{\kappa} + \beta_{2}\rho_{\kappa}^{2} + C_{2}); H(\kappa \varepsilon) \end{split}$$

где t - шаг разрушения, мм, t =42 мм;

h - глубина разрушения, мм;

ho - радиус скругления рабочей кромки диска, мм;

 β - угол заострения рабочей кромки диска, градус;

 \mathcal{I}_{m} - диаметр диска, мм;

 $\beta_{1}, \beta_{2}, C_{1}, C_{2}$ - вспомогательные параметры;

$$\beta_1 = 0.0016(0.016); \ \beta_2 = 0.0045(0.045); \ C_1 = 1220(122);$$

 $C_2 = 5280(528);$

Как показал анализ, величины усилий перекатывания, приходящихся на один диск в спаренной шарошке, меньше подобных величин, приходящихся на одиночную дисковую шарошку, в среднем на 28%, а величины напорных усилий-на 20%. Поэтому

$$z^{1} = 1.28 \cdot 0.5z = 0.64z$$
;
 $v^{1} = 1.2 \cdot 0.5v = 0.6v$.

где z^1, y^1 - усилия перекатывания и подачи, действующие на одиночную дисковую шарошку.

Подставив в формулу для усилия перекатывания одиночной дисковой шарошки параметры диска, значения шага разрушения и контактной прочности породы получим:

$$z^1=0,64\cdot 0,51 e^{0.02142}(0,19h+0,24)(0,22\cdot 2+0,78)(0,0068\cdot 60+0,73)(8,9\cdot 1390-0,0016\cdot 1390^2+1220)=11500(0,19h+0,24);$$
 отсюда глубина разрушения

$$h = \frac{z^1 - 0.24 \cdot 11500}{0.19 \cdot 11500} = \frac{7960 - 2760}{2180} = 2,4 \text{ MM};$$

Необходимое усилие подачи на одну шарошку

$$y^{1} = 0.6 \cdot 0.51e^{0.02142}(0.17 \cdot 2.4 + 0.32)(0.22 \cdot 2 + 0.78)(0.0068 \cdot 60 + 0.73)(0.0035 \cdot 360 + 0.64)(43.5 \cdot 1390 - 0.004 \cdot 1390^{2} + 5280) = 182000, H = 82\kappa H(8.2\varepsilon.c);$$

Удельная энергоёмкость разрушения породы

$$H_{w} = \frac{7960}{42 \cdot 2.4} = 79 \text{ МДж/м}^{3}.$$

Пример

определения теоретической производительности бурового проходческого комбайна при разрушении пород с f=10 исполнительным органом, оснащенным дисковыми шарошками. Диаметр исполнительного органа Д=4,5 м, частота вращения ротора $n_{\rm P}=0.105c^{-1}$, величина подачи h=2.4 мм.

Площадь сечения выработки
$$S_{\rm B} = 0.25 \varPi \cdot \varPi^2 = 0.25 \cdot 3.14 \cdot 4.5^2 = 15.9 \ \mathrm{M}^2;$$
 Скорость подачи комбайна
$$\nu = 0.06 n_{\rm P} h = 0.06 \cdot 0.105 \cdot 2.4 = 0.0151 \ \mathrm{M/Muh}.$$
 Теоретическая производительность комбайна
$$Q_{meop} = S_{\rm B} \cdot \nu = 15.9 \cdot 0.0151 = 0.24 \ \mathrm{M}^3/\mathrm{Muh}.$$

Пример

расчета производительности проходческого комбайна бурового действия типа ШБМ-2

Исходные данные к расчету:

Сечение проходимой выработки $S=7.5\,\mathrm{m}^2$, Д=3,0 м, $\gamma=2.2\,\mathrm{T/m}^3$ скорость подачи $v_n=v_{n\,\mathrm{max}}=0.15\,\mathrm{m/muh}$;

Общее число резцов исполнительного органа z = 140 шт;

Величина хода домкрата $l_{o} = 0.7 \,\mathrm{M};$

Суммарное время на освобождение от давления последующего распора домкратов распорной балки принимается $t_1 + t_2 = 0.1$ мин;

Допустимый % выхода из строя резцов $z_{\rm g}=25\%$,

Удельный расход резцов $z_y = 0.2 \text{ шт/м}^3$;

Величина отодвигания комбайна от забоя a = 0.7 м;

Среднее время на замену резца $t_{\rm p} = 2 \, {\rm muh};$

Коэффициент надежности $K_{_{^{\prime\prime}}}=0.8$

Определяем теоретическую производительность комбайна(21)

$$Q_{meop} = 60 S v_{n/max} = 60 \cdot 7,5 \cdot 0,15 \cdot 2,2 = 148 \text{ T/yac},$$

или
$$\Pi_{meop} = \frac{Q_{meop}}{S\gamma} = \frac{148}{7.5 \cdot 2.2} = 8,96$$
 м/час.

Техническая производительность комбайна (23),

$$Q_{mex}=60Sv_{n.\max}K_{mex}$$
 T/4ac
$$K_{mex}=\frac{1}{\dfrac{1}{K_{n}}+\dfrac{T_{np}}{LB}v_{n.\max}};$$

$$T_{np}=T_{s.u}+T_{m.o.};$$

$$T_{s.u}=L_{\mathrm{B}}SZ_{\mathrm{v}}t_{\mathrm{P}};$$

Длина выработки, пройденной комбайном до замены инструмента.

$$L_{\rm B} = \frac{Z_{\rm g} z}{100 S Z_{\rm w}} = \frac{25 \cdot 140}{100 \cdot 7.5 \cdot 0.2} = 22.4 \text{ M},$$

$$T_{_{3,u}}=22,4\cdot 7,5\cdot 0,2\cdot 2=66$$
 мин; Время на маневровые операции $T_{_{M,o}}=T'_{_{M,o}}+T''_{_{M,o}};$ $T'_{_{M,o}}=\frac{2a}{v_{_{N,\max}}}=\frac{2\cdot 0,7}{0,15}=9,3$ мин, $T''_{_{M,o}}=\frac{L_{_{\rm B}}}{\lg}(t_1+t_2+\frac{\lg}{v_{_{N,\max}}})=\frac{22,4}{0,7}(0,1+\frac{0,7}{0,15})=152$ мин, $T_{_{M,o}}=9,3+152=161,3$ мин; $T_{_{np}}=66+161,3=227,3$ мин, $K_{_{mex}}=\frac{1}{\frac{1}{0,8}+\frac{227,3}{22,4\cdot 0,15}}=0,38$, $Q_{mex}=Q_{meop}K_{mex}=148\cdot 0,38=56$ т/час; $\Pi_{_{mex}}=\frac{Q_{mex}}{S\gamma}=\frac{56}{7,5\cdot 2,2}=3,4$ м/час. Эксплуатационная производительность комбайна (25) Принимаем $K_3=0,5$. $Q_3=Q_{mex}K_3=56\cdot 0,5=28$ т/час; $\Pi_3=\Pi_{mex}\cdot K_3=3,4\cdot 0,5=1,7$ м/час В результате расчета получен $Q_{meop}=148$ т/час, $Q_{meop}=8,96$ м/час, $Q_{meop}=8,96$ м/час,

 $\Pi_{\it mex} = 3,4$ M/час, $Q_{\tiny 9} = 28$ т/час, $\Pi_{\tiny 3} = 1,7$ м/час.

где $Q_{meon} \rangle Q_{mex} \rangle Q_{3}$ $\Pi_{meon} \rangle \Pi_{mex} \rangle \Pi_{3}$.

Пример

расчета производительности проходческого комбайна цикличного действия ПК-3м

Исходные данные к расчету:

Сечение трапециодальной выработки $S = 8.5 \text{ м}^2$;

Допустимый процент выхода из строя резцов $Z_{g}=25\%$;

Удельный расход резцов $Z_{y,y} = 0,1$ шт/м³ – для угля;

$$Z_{y.n} = 0,3 \, \,$$
шт/м 3 – для породы;

величина захвата B = 0.6 м;

среднее время на замену резца $t_{\rm p} = 2$ мин;

плотность угля $\gamma_v = 1,3$ т/м³

плотность породы $\gamma_n = 2,2$ т/м³;

коэффициент надежности $K_{\mu} = 0.9$.

величина отодвигания комбайна от забоя а=1,0 м.

диаметр коронки $d_{\rm K} = 0.65$ м.;

скорость подачи $v_n = 1,38$ м/мин;

общее число резцов Z = 18 шт

скорость максимальной поперечной подачи исполнительного органа $v_{n,\max} = 0{,}12\,$ м/сек.

Теоретическая производительность комбайна (22)

$$Q_{meop} = 3600 m B v_{n.max} \gamma$$
 , T/4ac

Мощность вынимаемого слоя угля

$$m = \frac{d_{\rm K}}{2} = \frac{0.65}{2} = 0.325$$
 M,

 $Q_{meop} = 3600 \cdot 0,325 \cdot 0,6 \cdot 0,12 \cdot 1,3 = 110$ т/час.

$$\Pi_{\scriptscriptstyle m} = \frac{Q_{\scriptscriptstyle meop}}{S \gamma_{\scriptscriptstyle N}} = \frac{110}{8.5 \cdot 1.3} = 10$$
 м/час.

Техническая производительность комбайна (24)

$$Q_{mex} = Q_{meon} K_{mex}$$
;

$$K_{mex} = \frac{1}{\frac{1}{K_{u}} + \frac{60T_{np}}{L_{u,o}} v_{n.n}};$$

где $L_{\!u.o}$ - путь исполнительного органа за рабочий цикл, м.

$$L_{u.o} = H_{\mathrm{B}}(rac{arepsilon_{_{\!\mathit{H}}} + arepsilon_{_{\!\mathit{B}}}}{2d_{_{\!\mathit{V}}}} - 1)$$
 , M.

 $H_{
m B} = 2,2\,$ м. высота проводимой выработки;

 $e_{_{\scriptscriptstyle H}} = 3{,}65\,$ м. ширина нижнего основания выработки;

 $e_{\rm B} = 3.05\,$ м. ширина верхнего основания выработки.

$$L_{u.o} = 2.2(\frac{3.65 + 3.05}{2.0.65} - 1) = 9.1 \text{ M}$$

Время простоя комбайна

$$T_{np} = T_{m,o} + t'_{m,o} + t_{3,u}$$
, МИН

Время маневровых операции

$$T_{\text{\tiny M.O}} = \frac{B}{v_{\text{\tiny m.o.}}} = \frac{0.6}{1.38} = 0.4$$
 muh,

 $t_{\scriptscriptstyle{M.O}}^{\prime}$ - удельные затраты времени на маневровые операции

$$t'_{\scriptscriptstyle M.O} = 200 \frac{L_{\scriptscriptstyle u.O} mBaZ_{\scriptscriptstyle y.y}}{Z_{\scriptscriptstyle g} zv_{\scriptscriptstyle M}} = 200 \frac{9,1 \cdot 0,325 \cdot 0,6 \cdot 1 \cdot 0,1}{25 \cdot 18 \cdot 1,38} = 0,35 \,$$
 мин.

$$v_n = v_M = 1,38 \text{ M/MUH},$$

 $t_{\scriptscriptstyle 3.0}$ - удельные затраты времени на замену резцов

$$t_{\scriptscriptstyle 3.u} = L_{\scriptscriptstyle u.o} mBZ_{\scriptscriptstyle yy} t_{\scriptscriptstyle p} = 9.1 \cdot 0.325 \cdot 0.6 \cdot 0.1 \cdot 2 = 0.35$$
 мин.
$$T_{\scriptscriptstyle np} = 0.4 + 0.057 + 0.35 = 0.80 \; \text{мин}$$

$$K_{\scriptscriptstyle mex} = \frac{1}{\frac{1}{0.9} + \frac{60 \cdot 0.8}{9.1} \cdot 0.12} = 0.578$$

при $v_{nn} = v_{n.n \, \text{max}} = 0,12$ м/сек.

$$Q_{\text{mex}} = 110 \cdot 0,578 = 63,58 \text{ т/час,}$$

$$\Pi_{\text{mex}} = \frac{Q_{\text{mex}}}{S\gamma_{\text{y}}} = \frac{63,58}{8,5 \cdot 1,3} = 5,75 \text{ м/час.}$$

При работе комбайна ПК-3м в выработках со смешенным забоем расчет производительности должен производится для угля и породы или по средним показателям $v_{nn.y}$ и $v_{n.n.n}$, γ_y и γ_n или $v_{n.n.cp}$, γ_{cp} . При этом техническая производительность комбайна

$$Q_{mex}=3600mBv_{n.n.cp}\gamma_{cp}K_{mex}$$
 , T/4ac

Средняя скорость поперечной подачи, м/сек

$$v_{n.n.cp} = \frac{Sv_yv_n}{S_yv_n + S_nv_y}$$
 , M/CeK.

где S - площадь поперечного сечения проходимой выработки м² $v_y=0.12\,$ м/сек, $v_n=0.06\,$ м/сек – скорость поперечной подачи исполнительного органа по углю и породе.

 $S_y = 4 \, \text{M}^2, \, S_n = 4,5 \, \text{M}^2 - \text{площади поперечного сечения угольного и породного забоя.}$

$$\begin{split} \nu_{\scriptscriptstyle n.n.cp} &= \frac{8,5 \cdot 0,12 \cdot 0,06}{4 \cdot 0,06 + 4,5 \cdot 0,12} = 0,078 \text{ M/cek} \\ \gamma_{\scriptscriptstyle cp} &= \frac{\gamma_{\scriptscriptstyle y} S_{\scriptscriptstyle y} + \gamma_{\scriptscriptstyle n} S_{\scriptscriptstyle n}}{S} = \frac{1,3 \cdot 4 + 2,2 \cdot 4,5}{8,5} = 1,8 \text{ T/M}^3 \\ Q_{\scriptscriptstyle mex} &= 3600 \cdot 0,325 \cdot 0,6 \cdot 0,078 \cdot 1,8 \cdot K_{\scriptscriptstyle mex} \text{ , T/чac} \\ K_{\scriptscriptstyle mex} &= \frac{1}{\frac{1}{K_{\scriptscriptstyle n}} + \frac{60T_{\scriptscriptstyle np}}{L_{\scriptscriptstyle u.o}}} \text{ ;} \end{split}$$

где $L_{u.o}=9,\!1\,\mathrm{M-}$ путь исполнительного органа за рабочий цикл T_{np} -время простоев

$$T_{np}=T_{_{M.o}}+t_{m.o}'+t_{3.o}$$
 , МИН $T_{m.o}=rac{B}{v_{_{n}}}=rac{0.6}{1,38}=0.4\,$ МИН

$$t_{m.o}^{\prime}=200rac{L_{u.o}mBZ_{ycp}Q}{Z_{o}Zv_{n}}$$
 , мин

где $Z_{v.cp}$ -средний удельный расход резцов

$$\begin{split} Z_{y.cp} &= \frac{Z_{y.y}S_y + Z_{yn}S_n}{S} = \frac{0,1 \cdot 4 + 0,3 \cdot 4,5}{8,5} = 0,22 \text{ шт/м}^3 \\ t'_{\scriptscriptstyle{M.o}} &= 200 \frac{9,1 \cdot 0,325 \cdot 0,6 \cdot 1,0 \cdot 0,22}{25 \cdot 18 \cdot 1,38} = 0,071 \text{ мин} \\ t_{\scriptscriptstyle{3.u}} &= L_{\scriptscriptstyle{u.o}} mBZ_{\scriptscriptstyle{y.cp}} t_p = 9,1 \cdot 0,325 \cdot 0,6 \cdot 0,22 \cdot 2,0 = 0,87 \text{ мин} \\ T_{\scriptscriptstyle{np}} &= 0,4 + 0,071 + 0,87 = 1,34 \text{ мин} \\ K_{\scriptscriptstyle{mex}} &= \frac{1}{\frac{1}{0,9} + \frac{60 \cdot 1,34}{9,1}} 0,078} = 0,58 \\ Q_{\scriptscriptstyle{mex}} &= 99 \cdot 0,58 = 57,3 \text{ т/час} \\ \Pi_{\scriptscriptstyle{mex}} &= \frac{Q_{\scriptscriptstyle{mex}}}{S\gamma_{\scriptscriptstyle{cp}}} = \frac{57,3}{8,5 \cdot 1,8} = 3,74 \text{ м/час} \end{split}$$

Эксплуатационная производительность проходческого комбайна (25)

$$Q_{\scriptscriptstyle 9} = Q_{mex} K_{\scriptscriptstyle 9}$$
; $\Pi_{\scriptscriptstyle 9} = \Pi_{mex} K_{\scriptscriptstyle 9}$;

Принимая $K_{3} = 0.5$, получим

$$Q_3 = 57.3 \cdot 0.5 = 28.65$$
 T/4ac

$$\Pi_3 = 3.74 \cdot 0.5 = 1.87$$
 м/час.

Полученные результаты производительности показывают, что

$$Q_{meop} \rangle Q_{mex} \rangle Q_{\circ}$$
 $\Pi_{meop} \rangle \Pi_{mex} \rangle Q_{\circ}$

Погрузочные машины

Погрузочные машины предназначены для механизации погрузки отделенной от массива горной массы на транспортные средства при очистной выемке полезных ископаемых и проведении подготовительных выработок.

Погрузочная машина выполняет две основные функции: захват горной массы, отделенной от массива взрывными работами и передачу ее на последующую транспортную установку с подъемом на необходимую для этого высоту.

Погрузочные машины классифицируют по следующим признакам:

- по способу захвата- нижний, боковой, верхний;
- по типу исполнительного органа ковшовый, гребковый, барабанно лопастной, нагребающие лапы;
- по способу передачи груза на последующее транспортное устройство-прямая погрузка, ступенчатая погрузка;
- по способу передвижения машины с колесно рельсовым ходом, гусеничным, пневмоколесным;
- по принципу действия исполнительного органа периодический или непрерывный.
- по массе машины разделяют на легкие (до 9,5 т) средние (до 14 т), тяжелые (до 18 т) и особо тяжелые (до 25-32 т).

Широкое распространение получили погрузочные машины типа ППН периодического действия с нижним захватом ковшовым исполнительным органом прямой и ступенчатой погрузки.

Все большее применение находят погрузочные машины типа ПНБ непрерывного действия с боковым захватом. Исполнительным органам машин типа ПНБ служат нагребающие лапы или рифленые диски. Машины типа ПНБ, как правило, изготовляют с гусеничной ходовой частью и электрическим приводом. Машины прямой погрузки с колёсно — рельсовой ходовой частью и пневматическим приводом обеспечивают работу в выработках с углом наклона до $\pm 3^{\circ}$, а с электрическим приводом — только в горизонтальных выработках.

Машины с гусеничной ходовой частью могут работать в выработках с углом наклона до $\pm 8^{\circ}$.

Погрузочные машины характеризуются следующими основными параметрами: производительностью, емкостью ковша, фронтом погрузки, шириной, высотой в верхнем положении ковша, транспортной высотой, погрузочной высотой и массой.

Главным параметром погрузочных машин является их производительность. Нижний предел технической производительности погрузочных машин обычно равен 0,5 м³/мин.

Емкость ковша у ковшовых погрузочных машин изменяется от 0,125 до $0.8~\text{m}^3$.

Основными рабочими органами погрузочных машин являются исполнительный орган, поворотное устройство, транспортное устройство и ходовая часть.

Производительность ковшовых погрузочных машин

Теоретическая производительность ковшовых погрузочных машин определяется по формуле

$$Q_{meop} = \frac{60}{T} V_{\kappa} = n_{u} V_{\kappa}$$
, м³/мин, (26)

где T – теоретическая продолжительность цикла, сек (обычно T=10-15 сек);

 $V_{_{\scriptscriptstyle K}}$ - геометрическая ёмкость ковша, м 3 ;

 $n_{_{\!\scriptscriptstyle H}} = \frac{60}{T}$ - частота рабочих циклов, мин-1.

Техническая производительность определяется по выражению

$$Q_{mex} = Q_{meop} K_3 \frac{1}{K_u} K_p = \frac{n_u}{K_u} K_3 K_p V_{\kappa}$$
, м³/мин, (27)

где $K_{\scriptscriptstyle 3}$ - коэффициент заполнения ковша.

 K_{u} - коэффициент, учитывающий изменение времени в цикле в реальных условиях,

для машин с пневмоприводом $K_u = 0.92 - 1.1$,

для машин с электроприводом $K_u = 1,0-1,5$

 $K_{\scriptscriptstyle p}$ - коэффициент дополнительного разрыхления в ковше,

для ковшей ёмкостью до 0,12 м $^3~K_{_{D}}=0.92$,

для ковшей большой ёмкости $K_p = 0.92 - 0.96$.

Эксплуатационная производительность определяется с учетом потерь времени на подготовительно — заключительные операции, обмен вагонеток и простой по организационным и техническим причинам, она равна

$$Q_{\scriptscriptstyle 9}=60rac{v_{\scriptscriptstyle n}}{T_{\scriptscriptstyle 0}}$$
 , ${
m M}^3/{
m Yac}$,

 v_n - полный объем горной массы, погруженной машиной за проходческий цикл. м³:

$$v_n = L_{\mu} S \eta_{\mathrm{B}} K_p$$
 , M³,

где L_{ν} - расчетное подвигание выработки за один цикл, м,

S - площадь сечения выработки вчерне, M^2 ,

 $\eta_{\scriptscriptstyle B}$ - коэффициент, учитывающий увеличение сечения выработки S против проектного $\eta_{\scriptscriptstyle R}$ =1,05-1,08,

 $K_{\scriptscriptstyle p}$ - коэффициент разрыхления горной массы.

 T_{a} - общее время работы машины

$$T_o = \frac{60v_n\delta}{Q_{mov}} + (\frac{v_n}{Zv_R} - 1)t_0 + \sum t_{np}$$
, muh (30)

где $\delta = 1,1-1,6$ коэффициент, учитывающий расположения горной массы.

 $v_{\scriptscriptstyle B}$ - ёмкость вагонетки, м³;

Z -число вагонеток в партии, загружаемой без перерыва;

 t_0 -время обмена партии или одной вагонетки, мин;

 $\sum t_{np}$ -суммарное время простоев машины по организационнотехническим причинам, включая подготовительно-заключительные операции, мин.

Производительность погрузочной машины с нагребающими лапами

Техническая производительность погрузочной машины с нагребающими лапами.

$$Q_{mex} = ZnV_{\pi}, \, \mathsf{M}^3/\mathsf{M}\mathsf{И}\mathsf{H} \tag{31}$$

где Z - число нагребающих лап (обычно две или четыре);

n - число ходов каждой лапы в минуту;

обычно для тяжелых грузов $n=30-35\,,$ для легких грузов $n=45\,,$

 $V_{_{\scriptscriptstyle J}}$ - объем горной массы, захватываемой каждой лапой за рабочий ход, м³,

$$v_{_{\scriptscriptstyle J}} = \frac{B_{_{\! 3}}}{2} \, d_{_{\rm T}} h_{_{\! 2p}}$$
 , M³,

где B_3 - ширина захвата, м;

 $d_{\rm T}$ - расстояние между участками траектории лап в период нагребания и обратного хода, ориентировочно равное диаметру ведущих дисков $d_{\, o}$, м;

 $h_{_{\!\it PP}}$ - средняя высота слоя нагребаемой горной массы, которая для скальных пород может быть принята равной двойной высоте нагребающей лапы (h) т.е. $h_{_{\!\it PP}}=2h$, а для слабых пород-высоте лапы, т.е. $h_{_{\!\it PP}}=h$, м.

Окончательно техническая производительность машины с нагребающими лапами определяется по формуле

$$Q_{mex} = \frac{1}{2} Z n B_3 d_g h_{zp}$$
, м³/мин (33)

Пример

расчета производительности ковшовой погрузочной машины ППН-

Краткая техническая характеристика погрузочной машины ППН-3

Производительность техническая – 1.25 м³/мин.

Емкость ковша, $-0.5 \,\mathrm{M}^3$ Установленная мощность, - 52 л.с. - 1650 мм, Высота разгрузки - 3200 мм, Фронт погрузки - 6,8 т.

Масса машины

Теоретическая производительность (26) при

T=12 сек,
$$n_u=\frac{60}{12}=5$$
 , мин
$$Q_{\rm meop}=n_u\,0.5=5\cdot0.5=2.5\;{\rm M}^3/{\rm M}{\rm M}{\rm H},$$

Техническая производительность (27) при K_3 -зависит от крупности куска породы (до 350 мм), от соотношения сцепного веса (Рсм=66,7 Кн) машины к ширине ковша (650 мм) $\frac{66,7}{650} = 10,16$ Кн/мм или 102,6 $\frac{H}{100}$.

Принимаем $K_3 = 0.88$ (Н.А Малевич «Горнопроходческие машины и комплексы», М.: Недра, 1980. табл. 3,6)

 $K_u = 0.99$ - для машин с пневматическим приводом $K_p = 0.94$ - для $E = 0.5 \text{ M}^3$.

$$Q_{mex} = \frac{5}{0.99} \, 0.88 \cdot 0.94 \cdot 0.5 \approx 2 \,$$
 м³/мин.

Эксплуатационная производительность (28)

$$Q_{\scriptscriptstyle 9}=60rac{v_{\scriptscriptstyle n}}{T_{\scriptscriptstyle o}}$$
 , ${
m M}^3/{
m Yac}$

где $v_n = L_\nu S \eta_{\scriptscriptstyle R} K_n$, м³;

при
$$L_{_{\!\mathit{U}}}=2$$
 м; $S=7{,}5$ м $^2,\;\eta_{_{\!R}}=1{,}065\,,$

$$v_n = 2 \cdot 7.5 \cdot 1.065 \cdot 0.94 = 15.08 \text{ m}^3;$$

$$T_0 = rac{60 v_n \delta}{Q_{mex}} + (rac{v_n}{Z v_B} - 1) t_0 + \sum t_n$$
 , мин

при
$$\delta=1{,}35$$
 , $Z=1$, $v_{{\scriptscriptstyle B}}=1\,{\rm M}^3$, $t_{{\scriptscriptstyle 0}}=1{,}0\,$ мин, $\sum t_{{\scriptscriptstyle n}}=4{,}8\,$ мин

$$T_0 = \frac{60 \cdot 15,08 \cdot 1,35}{2} + (\frac{2}{1 \cdot 1} - 1)2,0 + 4,8 = 617,5$$
 мин,

или $T_0 = 10,3$ час

$$Q_{\text{p}} = 60 \frac{15,08}{617,5} = 1,46 \text{ m}^3/\text{yac}.$$

Расчет производительности погрузочной машины непрерывного действия 2ПНБ-2

Основные данные машины:

Нагребающая часть:

Число нагребающих лап Z=2

Число ходов одной лапы n = 36 ходов/мин;

Ширина захвата $B_3 = 1800$ мм;

Высота лапы h = 150 мм;

Ход лапы (или глубина загребания может быть принята равной диаметру ведущих дисков

диаметр ведущих дисков $d_{g} = 500\,$ мм;

загребания лап в глубину $d_{\scriptscriptstyle m} \approx d_{\scriptscriptstyle 3} \approx 500\,$ мм.

Максимальный размер кусков, который может загрузить

$$a_{\rm max} = \frac{d_{\rm g}}{K}$$
; MM

где K- коэффициент, учитывающий размер кусков, K=1,2÷1,4, принимаем K=1,25

$$a_{\text{max}} = \frac{500}{1.25} = 400 \text{ MM}.$$

Техническая производительность (31) в данных условиях при значениях (32)

$$\nu_{_{\scriptscriptstyle \mathcal{I}}} = \frac{B_{\scriptscriptstyle 3}}{2} \, d_{_{m}} h_{_{\scriptscriptstyle \mathcal{I}\!p}} \, , \, \mathsf{M}^{3}. \label{eq:numbers}$$

Принимаем $h_{cp} = 2h = 2 \cdot 150 = 300$ мм,

Тогда
$$v_{\pi} = \frac{1.8}{2} \cdot 0.5 \cdot 0.3 = 0.135 \text{ м}^3$$

$$Q_{mexy} = 2 \cdot 36 \cdot 0,135 = 9,72$$
 м³/мин.

Производительность конвейера (передаточного) принимается с резервом на 10-15%. Исходя из этого, должны выбираться тип, ширина и скорость органа передаточного конвейера.

Производительность конвейера

$$Q_{KOH6} = 1,15Q_{mex} = 1,15 \cdot 9,72 = 11,2 \text{ M}^3/\text{MUH},$$

ширина желоба $B_{\kappa} = 650\,$ мм,

скорость цепи v = 0.97 м/сек

Необходимая высота слоя (высота бортов в конвейере) определяется из условия.

$$Q_{_{\mathit{KOHG}}}=B_{_{\mathit{K}}}h_{_{\mathit{CR}}}v60$$
 , м³/мин откуда $h_{_{\mathit{CR}}}=rac{Q_{_{\mathit{KOHG}}}}{B_{_{\mathit{L}}}v60}=rac{11,2}{0.65\cdot0.97\cdot60}=0,296m=296$ мм

Выбор прочных размеров главного редуктора и мощности двигателей производится, исходя из суммарной величины сопротивлений

$$W_o = W_1 + W_2$$
 , KCC,

где $W_{_{\! 1}}$ - сопротивление штабеля внедрению кромки приемной плиты рабочего органа;

 W_{2} - сопротивление движению самой погрузочной машины;

$$W_{\scriptscriptstyle 1} = \sum l * K_{\scriptscriptstyle e}$$
 , KCC;

где $\sum l$ - суммарная длина одновременно внедряющихся в материал кромок приемной плиты и рабочего органа, см;

$$\sum l = B_3 + l_{\scriptscriptstyle \it nansi}, \, {\rm CM};$$

где l - длина одной лапы l =100 см;

$$l_{{\scriptscriptstyle \it nanis}} = 2 \cdot 100 = 200$$
 , cm;
$$\sum l = 180 + 200 = 380 \; {\rm cm}.$$

 $K_{\scriptscriptstyle g}$ - удельное сопротивление внедрения для тяжелой руды $K_{\scriptscriptstyle g}$ =7 кгс/см:

$$W_1 = 380 \cdot 7 = 2660$$
 KFC;

$$W_2 = G_m(w^1 \pm i + \frac{a_m}{g})$$
 , KFC,

где G_m - полный вес машины, кг. Принимаем G_m =1200 кг

 w^1 - коэффициент сопротивления движению машины:

при гусеничном ходе $w^1 = 0.15 - 0.2$:

при рельсовом ходе $w^1 = 0.015 - 0.02$;

i - уклон пути на котором работает машина, если машина предназначена для уклона до 60 принимаем $i = tg\beta = 0.1$ BBepx.

 a_{m} - ускорение машины в начале движения, принимаем

$$a_m = 0.2 \text{ m/cek}^2;$$

$$W_2 = 12000(0,\!15+0,\!1+\frac{0,\!2}{9,\!81}) = 3200 \ \text{kTC};$$

$$W_0 = 2650 + 3200 = 5850$$
 krc

Расчет усилия

$$W_{pacy} = K_{g}W_{0}$$
 , KCC

где $K_{\scriptscriptstyle \sigma}$ - коэффициент, учитывающий действие динамических усилий, $K_o = 1.3 - 1.7$; принимаем $K_o = 1.28$;

$$W_{pacu} = 1,28 \cdot 5850 = 7500$$
 KFC,

Проверяем вес погрузочной машины по $W_{\scriptscriptstyle pacy}$

$$W_{pacq} = G_m \cdot \Psi$$
 ; кгс.

$$G_{\scriptscriptstyle m} = rac{W_{\scriptscriptstyle pac^{\scriptscriptstyle oldsymbol u}}}{\psi}$$
 ; кг.

где $\psi = 0.6 - 0.7$ - коэффициент сцепления с опорной поверхностью

$$G_m = \frac{7500}{0.6} = 12500 \text{ K}$$

Мощность двигателя, при v = 9.2 м/мин=0,153 м/сек.

$$N = \frac{W_{pacq} \nu}{102 \cdot \eta_m} = \frac{7500 \cdot 0,153}{102 \cdot 0,75} = 15 \text{ kBT}$$

Мощность, необходимая для маневрового хода машины при

$$v_{MAHEB} = 16.8 \text{M} / \text{MUH} = 0.28 \text{M} / \text{CeK}.$$

$$N = \frac{W_2 v_{\text{манев}}}{102 \eta_{\text{w}}} = \frac{3200 \cdot 0{,}28}{102 \cdot 0{,}28} = 11{,}7$$
 кВт.

Производительность одноковшовых экскаваторов

Производительность экскаваторов зависит от следующих факторов:

- Категория горной массы и ее состояние. При разработке, например, влажной глинистой породы, которая налипает на vменьшается полезный объём последнего увеличивается продолжительность цикла из-за более длительной разгрузки ковша. В **3NMHNX УСЛОВИЯХ** недостаточно раздробленный мерзлый грунт также снижает коэффициент наполнения ковша;
- 2) Технические данные, состояние и надежность экскаватора;
- 3) Квалификация машиниста;
- 4) Качество забоя, оцениваемое его высотой, условиями подхода транспорта к месту погрузки, освещенностью;
- 5) Организация работ, зависящая от достаточности транспортных средств, состояния дорог, своевременного снабжения топливом, энергией, запасными частями и т.п.

Теоретическая (часовая) производительность экскаватора по рыхлой массе определяется по формуле

$$Q_{meop.4} = 60En_z$$
, M³/yac, (34)

где E – ёмкость ковша экскаватора, $м^3$;

 n_z - число разгружаемых в минуту ковшей, мин-1.

Для многоковшовых экскаваторов n_z указывается в технической характеристике, для одноковшовых экскаваторов в технической характеристике даётся длительность цикла t_y , а n_z рассчитывается по формуле

$$n_z = 60t_u^{-1}$$
;

Продолжительность цикла обычно указывается для угла поворота, равного 90°. Для углов поворота отличных от 90° время цикла

умножают на коэффициент корректировки. Техническая производительность определяется по выражению

$$Q_{mex} = Q_{meop} \frac{K_{_{H}}}{K_{_{p}}} \cdot \frac{t_{_{p}}}{t_{_{p}} + t_{_{n}}} = 60 E n_{_{q}} \frac{t_{_{p}}}{t_{_{p}} + t_{_{n}}} K_{_{_{3K}}}, \, \text{M}^{3}/\text{yac} \eqno(35)$$

где K_{μ} - коэффициент наполнения ковша. Принимается K_{μ} =0,8÷1,1.

 $K_{\scriptscriptstyle D}$ - коэффициент разрыхления породы, $K_{\scriptscriptstyle D}$ =1,1-1,5.

 t_{p} - длительность непрерывной работы экскаватора с одного места установки или при одном направлении движения рабочего органа (для многоковшовых экскаваторов)

 $t_{_{ij}}$ - длительность одной передвижки (для одноковшовых экскаваторов) или перемены направления движения рабочего органа (для многоковшовых);

$$K_{\scriptscriptstyle 9\kappa} = \frac{K_{\scriptscriptstyle n}}{K_{\scriptscriptstyle p}}$$
 - коэффициент экскавации, $K_{\scriptscriptstyle 9\kappa} = 0.72 - 0.73$

Эксплуатационная производительность

$$Q_{\rm p} = Q_{\rm mex} T_c K_e = 60 \frac{t_p}{t_p + t_p} K_{\rm pk} E n_z T_c K_{\rm B}$$
 , m³/cmeHy (36)

где T_c - длительность смены, час;

 $K_{\rm \it B}$ -коэффициент использования экскаватора по времени, при погрузки в железнодорожные вагоны $K_{\rm \it B}$ =0,55 \div 0,8;

при погрузки в автосамосвалы, конвейеры и в отвал - $K_{\rm B}$ =0,8÷0,9.

Производительность бульдозера

Производительность бульдозера в значительной степени зависит от способа его работы. По мере срезания слоя породы и увеличения призмы волочения возрастает сопротивление перемещению бульдозера. С целью возможно более полной реализации силы тяги бульдозера не рекомендуется врезаться отвалом на постоянную глубину, а более целесообразно в начале цикла срезания заглублять отвал на большую глубину, чем в конце цикла срезания, т.е. работать с переменной толщиной стружки. Обычно путь, за который бульдозер набирает породу впереди отвала, составляет 5-7 м.

Производительность возрастает, если одновременно работают два спаренных бульдозера, устанавливаемые один от другого на расстоянии 0,25-0,3 м (для пород I и II категорий) и до 0,5 м для пород III категорий, в результате чего производительность увеличивается на 10-15%.

Техническая производительность бульдозера определяется по формуле

$$Q_{tex} = 3600 \frac{BH^2 K_0}{2K_p T_u tg \varphi_g}$$
, m³/час (37)

где В – ширина отвала, мм;

Н – высота отвала, мм;

 $K_0 - 0,5 L - коэффициент потерь отвала;$

Кр – коэффициент разрыхления породы;

 $arphi_{\scriptscriptstyle g}$ =200 – угол естественного откоса породы;

 $T_{\scriptscriptstyle u}$ - продолжительность цикла, сек.

В зависимости от вида работ эксплуатационную производительность бульдозера определяют по следующим зависимостям:

а) при резании и перемещении породы

$$Q_{_{9}} = 3600V_{_{\rm B}}K_{_{\rm B}}K_{_{_{\it VKI}}}\alpha_{_{\it n}}T_{_{\it u}}^{-1}, \ {\rm M}^3/{\rm vac}$$
 (38)

где $V_{\scriptscriptstyle B}$ -фактический объем призмы волочения, определяемый по зависимости;

$$V_{\rm B} = 0.5 K_n L H^2$$
, M²,

 $K_{\rm B}$ =0,85 \div 0,9 – коэффициент использования бульдозера по времени;

 $K_{_{y\kappa\eta}}$ - коэффициент, учитывающий уклон пути (1÷2,25 при уклоне от 0 до 15‰; 1÷0,4 – при подьеме от 0 до 15‰);

 $lpha_{\scriptscriptstyle n}=1-eta L_{\scriptscriptstyle n}$ - коэффициент, учитывающий просыпи породы из отвала в процессе ее перемещения на пути $L_{\scriptscriptstyle n}$.

$$(\beta = 0.008 \div 0.04 \text{ m}^{-1});$$

 T_u - продолжительность цикла, сек;

 $K_{\scriptscriptstyle n}$ - коэффициент призмы волочения в зависимости от отношения высоты отвала H к его длине L и вида породы приведены таблице 1:

Таблица 1.

Отношение H/L	0,15	0,3	0,35	0,4	0,45
Связные породы I и II	1,45	1,25	1,18	1,1	1,05
категорий					
Несвязные породы	0,87	0,835	0,8	0,77	1,67

$$T_{u} = \frac{l_{p}}{v_{p}} + \frac{l_{n}}{v_{n}} + \frac{l_{p} + l_{n}}{v_{0}} + t_{c} + t_{0} + 2t_{noo}, \text{ CeK}.$$

 $l_{_{p}}$ и $l_{_{n}}$ - длина пути соответственно при резании (6-10м) и перемещении породы бульдозером, м;

 $v_p\,,v_n\,$ и $v_0\,$ - скорости трактора соответственно при резании $(v_p=0,4\div 0.5\,),\,\,$ перемещении породы $(v_n=0,9\div 1,1)\,$ и обратном ходе $(v_0=1,1\div 5\,),\,$ м/с;

- t_{c} , t_{0} , t_{nos} время соответственно на переключении передачи (около 5c), опускание отвала (1,5-2,5c), поворот трактора (10c);
- б) при планировочных работах $Q^1_{_{\mathfrak{I}}}$ (м²/час) составит

$$Q_{_{9}}^{1} = \frac{3600L(e-a)K_{_{\rm B}}}{z(Lv^{-1} + t_{_{\rm B}})}, \text{ m}^2/\text{час}, \tag{40}$$

где L - длина планируемого участка, м;

в – ширина полосы за один проход, м;

 $a=0,3\div0,5$ — часть ширины пройденной полосы, перекрываемой при последующем смежном проходе, м;

 $z = 1 \div 2$ – число проходов по одному месту;

 $v = 0.8 \div 1.8$ - рабочая скорость при планировочных работах, м/с;

 $t_n = 8 \div 12$ время, затрачиваемое на повороты при каждом проходе, сек.

Пример

расчета производительности одноковшового экскаватора ЭКГ-8И.

Краткая техническая характеристика экскаватора ЭКГ-8И.

Стандартная вместимость ковша – 8 м³.

Длина стрелы - 13,35 м;

Длина рукояти – 11,43 м;

Радиус черпания – не более – 18,4 м;

Высота черпания - не более - 13,5 м;

Скорость подъема ковша – 0,94 м/сек;

Скорость передвижения км/час – 0,42 км/час;

Время цикла при угле поворота 900 – 26 сек.

Теоретическая (часовая) производительность одноковшового экскаватора определяется по формуле (34)

$$Q_{meop,q} = 60 \cdot 8 \cdot 2,3 = 1104 \text{ m}^3/\text{yac},$$

$$n_z = \frac{60}{t_y} = \frac{60}{26} = 2,3 \text{ ,}$$

Техническая производительность определяется по выражению (35) при $t_p=4$ часа, $t_n=0.3$ час, $K_{_{\mathfrak{R}\!\!\!\!/}}=0.725$.

$$Q_{mex} = 60 \cdot 8 \cdot 2.3 \frac{4}{4 + 0.3} 0.725 \approx 240 \,, \quad \text{M}^3/\text{Yac}$$

Эксплуатационная производительность (36) при $T_c=8$ час, $K_{\mathrm{B}}=0.85$ будет равна

$$Q_{2} = 240 \cdot 8 \cdot 0.85 = 1632$$
 m³/cmeHy.

Пример расчета производительности бульдозера Д3-35 (на базе трактора Т-180г)

Краткая техническая характеристика бульдозера Параметры отвала

Длина (ширина) L = B = 3640 мм;

Высота с козырьком Н=1480 мм;

Коэффициент потерь объема принимаем $K_0 \approx 0.5\,L$ расстояние транспортировки 1=50 м

Угол естественного откоса породы в движении $arphi_g = 20$, $t_a = 20^0 = 0{,}364$

Коэффициент разрыхления породы $K_p = 1,27$

Продолжительность цикла работы бульдозера

$$T_{u} = \frac{l_{p}}{v_{p}} + \frac{l_{n}}{v_{n}} + \frac{l_{p} + l_{n}}{v_{0}} + t_{c} + t_{0} + 2t_{{\scriptscriptstyle HOG}} \,, \, \text{CeK}.$$

где l_n - длина пути при резании, принимаем l_n =8 м;

 $l_{\scriptscriptstyle n}$ - длина пути перемещении породы бульдозером, принимаем $l_{\scriptscriptstyle n}$ =50 м.

 v_p , v_n и v_0 - скорости трактора соответственно при резании, перемещении породы и обратном ходе принимаем $v_p=0.45$ м/с; $v_n=1.05$ м/с; $v_0=3.0$ м/с;

 t_{c},t_{0},t_{nos} - время соответственно на переключении передачи, опускание отвала, поворот трактора, принимаем

$$t_c = 5$$
 сек; $t_0 = 2$ сек; 46

$$t_{\mu 08} = 10 \text{ ceK};$$

$$T_{y} = \frac{8}{0.45} + \frac{50}{1.05} + \frac{8+50}{3.0} + 5 + 2 + 10 = 101,67$$
 cek

С учетом вышеприведенных параметров техническая производительность бульдозера (37) будет равна

$$Q_{mex} = \frac{3600 \cdot 3,64 \cdot 1,48^2 \cdot 0,5 \cdot 50}{2 \cdot 1,27 \cdot 101.67 \cdot 0.364} = 7634 \text{ m}^3/\text{yac}$$

Эксплуатационная производительность при

$$Q_{_{2KC}}=Q_{mex}TK_{_{n}}$$
 , ${
m M}^{3}/{
m CMeHy}$

При T = 7 час - продолжительность смены в часах;

 $K_n = 0.7$ - коэффициент использования во времени.

$$Q_{_{2KC}} = 7634 \cdot 7 \cdot 0.7 = 37406.6$$
, m³/cmeHy

Эксплуатационная производительность бульдозера при резании и перемещении породы (38):

при фактическом объеме призмы волочения (39)

$$V_{\rm B} = 0.5 K_n L H^2$$
, M³

где K_n -коэффициент призмы волочения $K_n=f(H/L)$, принимаем

$$K_{\scriptscriptstyle n} = \frac{H}{L} = \frac{1.4}{3.64} = 0.40$$
 , учитывая то, что порода является связным и I и

II категории (табл.1). Принимаем K_n =1,1.

$$\begin{split} V_{\rm B} &= 0.5 \cdot 1.1 \cdot 3.64 \cdot 1.48 = 2.96 \;, \quad {\rm M}^3; \\ K_{\rm B} &= 0.85 \;; \quad K_{_{\it JKN}} = 2 \;; \quad \beta = 0.008 \;, \\ \gamma_{_{\it I}} &= 1 - \beta L_{_{\it I}} = 1 - 0.008 \cdot 50 = 0.6 \\ T_{_{\it U}} &= 101.67 \;\; {\rm CeK}. \end{split}$$

$$Q_9 = 3600 \cdot 2,96 \cdot 0,85 \cdot 2 \cdot 0,6 \frac{1}{101,67} = 106,9$$
 m³/час.

Эксплуатационная производительность бульдозера при планировочных работах (40):

при $L=50\,$ м, в=3,64 м, а=0,4 м, z =2, v =2,2 м/сек, t_n =10 сек, $K_{\rm B}$ =0,7.

$$Q_{\scriptscriptstyle 9} = \frac{3600 \cdot 50 \cdot (3,64 - 0,4) \cdot 0,7}{2(50 \cdot 2,2^{-1} + 10)} = 6242,2 \text{ M}^2/\text{час}.$$

Расчет максимально возможной скорости подачи комбайна

Максимально возможная скорость подачи комбайна определяется по выражению

$$V_{n \max} = h_{\max} n_{u o} z_{nn}$$
, M/C,

где h_{\max} - глубина резания, м,

 $n_{u.o}$ - частота вращения исполнительного органа, $\frac{1}{ce\kappa}$;

 z_{nn} - число резцов в линии резания

$$h_{\rm max} = \frac{Z_{\rm max}}{AK_{\rm o}K_{\rm B}K_{\rm y}K_{\rm o}K_{\rm 3}K_{\rm 39}}\,,\,{\rm M}. \label{eq:hmax}$$

где Z_{max} -максимальное усилие резания для различных типов исполнительных органов.

$$Z_{\text{max}} = K_p Z_{cp}$$
, H.

где $K_{\scriptscriptstyle p}$ - коэффициент схемы резания.

Для шнековых, барабанных корончатых исполнительных органов $K_{_{\scriptscriptstyle D}} = 1,55$;

Для струговых, врубовых, баровых, буроскалывающих исполнительных органов $\,K_{_{p}}=1\,,\,$

Для комбайна типа «Донбасс-1кг» принимаем $K_{p}=1$;

 Z_{cp} - среднее число резцов, одновременно работающихся в забое.

Для семилинейной режущей цепи Z_{cp} =29,

Для пятилинейной режущей цепи Z_{cp} =22.

$$Z_{\text{max}} = 1 \cdot 29 = 29\mu = 0.029$$
 KH.

 \overline{A} – сопротивляемость резанию \overline{A} =150f(кгс/см или КН/м)

При f=5 по проф. М.М. Протодьяконову
$$\overline{A} = 150 \cdot 5 = 750 \text{ KH/m}.$$

 K_{δ} - коэффициент степени блокирования работы резцов, значение зависить от коэффициента крепости f .

$$K_{\delta} = f(\frac{t}{n});$$

t - шаг резания, h -глубина резания.

$$\frac{t}{n} \approx 5 \div 9$$
 при этом $K_{\delta} = 0.25 \div 1$;

Принимаем для глубины резания менее 20 мм K_{δ} =0,88. Для глубины резания более 20 мм K_{δ} =1,2÷1,8.

 K_{B} -коэффициент, учитывающий влияние на величину усилия резания ширины рабочего резца и определяется по выражению

$$K_{\rm B} = 1 + K_{\rm B}^1(l_x - \epsilon)$$
;

где в=20 мм – ширина резца;

 l_{x} =25 мм ширина рабочего резца.

 $K_{\rm B}^1$ - коэффициент, учитывающий коэффициент крепости (f) породы, при f \leq 5-6 $K_{\rm B}^1$ =0,03-0,085 1/мм;

Принимаем $K_{\rm B}^1 = 0.06$ 1/мм;

$$K_{\rm B} = 1 + 0.06(25 - 20) = 1.3$$

 $K_{_{\gamma}}=1{,}0\div2{,}7$ - коэффициент, учитывающий угол резания данного резца

Принимаем $K_{\nu} = 1,85$

 $K_{\rm 3}$ - коэффициент, учитывающий влияние степени затупленности резца на усилие резания

$$K_3 = \lambda C + 1$$
,

где λ -коэффициент, учитывающий вид породы или полезного ископаемого.

Для антрацита и каменного угля $\lambda = 0.07 \div 0.15$.

Для бурого угля $\lambda = 0.1 \div 0.2$.

Принимаем $\lambda = 0.15$

С –линейный износ по задней грани, принимаем С=2.

$$K_3 = 0.15 \cdot 2 + 1 = 1.30$$

 $K_{_{arphi}}$ - коэффициент, учитывающий влияние угла наклона боковых режущих кромок (P) резца

$$K_{\varphi} = 1 + 0.6 \frac{h}{g} tg \frac{\varphi}{2}$$
;

где $h=50-80\,$ мм – толщина среза. Принимаем $h=65\,$ мм, в=20 мм – толщина державки резца.

Принимаем $\varphi = 20^{\circ}$, при этом $tg \, 20^{\circ} = 0.364$;

 $tg\frac{20}{2} = tg10^0 = 0.182$.

$$K_{\varphi} = 1 + 0.6 \frac{65}{20} 0.182 = 1.35$$
.

 $K_{3\partial}$ -коэффициент состояния забоя. Принимаем $K_{3\partial}$ =0,5

$$h_{\max} = \frac{0,029}{750 \cdot 0,88 \cdot 1,3 \cdot 1,85 \cdot 1,35 \cdot 1,3 \cdot 0,5} = 0,00003 \,\mathrm{M}.$$

При n = 15 1/сек, $Z_{n.p} = 8$ резцов.

 $v_{n.\,\mathrm{max}} = 0,\!00003\cdot 15\cdot 8 = 0,\!0036~\mathrm{M/cek},$

По формуле
$$v_{n.\max} = \frac{N_p}{60mmBH_{\cdots}}$$
 , м/сек.

где $\,N_{_p}\,$ - мощность, расходуемая на резание угля, $\,N_{_p}\,$ =75 кВт

 $m = 0.83 \,\mathrm{M} - \mathrm{MOЩ}$ ность вынимаемого пласта,

B = 1,6 м – ширина захвата,

 H_{w} =300 кВт.ч/м³- удельная энергоемкость

$$v_{n.\,\mathrm{max}} = \frac{75}{60\cdot 0.83\cdot 1.6\cdot 300} = 0,0031\,\,\mathrm{M/c}$$
 или $v_{n.\,\mathrm{max}} = 0,186\,\,\mathrm{M/Muh}.$

Расчет скорости перемещения комбайна Донбасс-1Г

Предлагаются три схемы расчета в зависимости от заданных параметров:

- I.— при заданном значении среднего сечения среза S_{cp} . Для забойных резцов барабанных и шнековых исполнительных органов рекомендуется принимать S_{cp} =15÷30 см².
- II. при заданном значении скорости резания v_n , м/с;
- III. при заданном значении средней ширины среза t_{cp} , см.

Расчетная (теоретическая) скорость перемещения машины для всех трех схем определяется по отношению к времени непрерывной работы, исходя из заданной производительности.

$$v_{np}=rac{Q_{p}}{B_{3}H_{n}\gamma_{o\delta}}$$
 , м/мин,

Исходя из технической характеристики комбайна Донбасс-1Г, принимаем

 $Q_{\scriptscriptstyle p}$ =1,6-3,3 т/мин- расчетная производительность комбайна $Q_{\scriptscriptstyle p}$ =2,5 т/мин;

 B_3 =1,6(1,8;2) м – ширина захвата, B_3 =1,6 м;

 $H_{_{p}}$ =0,71(0,83;1), м – расчетная мощность вынимаемого пласта $H_{_{p}}$ =0,83 м;

 $\gamma_{o\delta}$ =0,85 т/м³ – объемная масса угля.

$$v_{np} = \frac{2.5}{1.6 \cdot 0.83 \cdot 0.85} = 2.2 \text{ M/M/H};$$

При указанных условиях расчетная скорость перемещения комбайна $v_{np}=2,2\,$ м/мин.

Скорость резания исполнительного органа комбайна определяется

$$v_p = 3.33 D_u \frac{v_p}{h_{cp} m_3}$$
 , CM;

Принимаем: $D_u = 0.83$ м, $v_{np} = 2.2$ м/мин

При заданном значении $S_{cp} = 22 \, \text{cm}^2$ средняя толщина среза

$$h_{cp} = \sqrt{0.25(1+0.8ep)^2 + 0.8\frac{S_{cp}}{K_{vu}}} - (0.4ep + 0.5)$$
 , CM,

где вр=2 см- расчетная ширина режущей кромки резца,

 K_{u} -коэффициент, учитывающий сопротивляемости,

для вязких углей $K_{,,,}$ =0,83;

для хрупких углей $K_{,,,}$ =1,15;

Тогда
$$h_{cp} = \sqrt{0.25(1+0.8\cdot 2)^2 + 0.8\frac{22}{0.85}} - (0.4\cdot 2 + 0.5) = 3.43$$
 см.

 m_3 -количество забойных резцов линии резания, принимаем m_3 =45;

$$v_p = 3,33 \cdot 0,83 \frac{2,2}{0.0343 \cdot 45} = 3,9 \text{ м/мин,}$$

Скорость резания комбайна МК-67 определяется

$$v_p = 3.33 D_u \frac{v_{np}}{h_{cn} m_3}$$
; м/мин;

где D_u -диаметр барабана по зубцам в верхней (нижней)части D_u =0,85 м,

 v_{np} -скорость подачи (перемещения) принимаем $v_{np} = 2$ м/мин,

 n_{cp} -средняя толщина среза $h_{cp} = 0.08 \, \mathrm{M}$,

 m_3 - количество резцов в линии резания m_3 = 20.

$$v_p = 3,33 \cdot 0,85 \frac{2}{0.08 \cdot 20} = 3,5$$
 M/MuH

Определение энергетических показателей механических свойств пород

I. По гипотезе Риттенгера работа разрушения равна L=CS , кгс.см.

где S -величина образованной поверхности. $S=2,25\,$ см 2 (1,5x1,5) см.

С- коэффициент пропорциональности. Из практики С≈ 20.

$$L = 20 \cdot 2.25 = 45 \text{ KCC.CM}^2$$
.

При $S = 0.000225 \,\mathrm{M}^2$

 $L = 20 \cdot 0.000225 = 0.0045$ кгс.м² или L = 0.045 Дж.

2. По гипотезе Кирпичева-Кика работа разрушения равна

$$L = CV$$
, KCC.CM,

где V - объем разушенного материала, см³; V =3,375 см³ (1,5x1,5x1,5) см

С₁ – коэффициент пропорциональности. Из практики С₁=13.

 $L = 13 \cdot 3{,}375 = 43{,}8$ кгс.см, при $V = 0{,}0000033$ м 2

 $L = 13 \cdot 0,0000033 = 0,0000429$ кгс.м, или L = 0,00042 Дж.

Расчет мощности электропривода струговой установки

1. Энергетический метод определения мощности N=3600vhHq , кВт

где ν -скорость перемещения струга, принимаем $\nu = 2,2\,$ м/сек;

h -толщина среза, принимаем h =0,15 м;

H -вынимаемая мощность пласта, H =0,83 м.

q - удельный расход электроэнергии, q =0,15 \div 0,6 кВт.ч/м³, принимаем q =0,15 кВт.ч/м³.

$$N = 3600 \cdot 2, 2 \cdot 0, 15 \cdot 0, 83 \cdot 0, 15 = 41, 2$$
 кВт.

2. Силовой метод определения мощности

$$N = \frac{Fv}{102\eta_{\partial s}}$$
, кВт,

где F - тяговое усилие, для мягких углей F =3240 кгс,

v - скорость движения струга, v =0,613 м/сек,

 η - коэффициент полезного действия установки, η =0,6

$$N = \frac{3240 \cdot 0,613}{102 \cdot 0,6} = 32,4 \text{ KBT}.$$

Литература

- 1. Яцких В.Г. и др. Горные машины и комплексы. М.: Недра, 1984.
- 2. Малевич Н.А. Горнопроходческие машины и комплексы. М.:Недра, 1971.
- 3. Солод В.И. и др. Горные машины и автоматизированные комплексы. М.:Недра, 1981.
- 4. Топчиев А.В. Горные машины и комплексы. М.: Недра, 1971.
- 5. Подэрни Р.Ю. Горные машины и комплексы для открытых работ. М.:Недра, 1985.
- 6. Михайлов Ю.И., Кантович Л.И. Горные машины и комплексы. М.:Недра, 1975.
- 7. <u>WWW.novtex.ru.-</u>: Журнал «Горное оборудование и электромеханика»

СОДЕРЖАНИЕ

Производительность	машин	вращательного	
бурения			3
Производительность	выёмочных компл	ексов	5
Производительность	проходческих комб	<u> </u> байнов	18
Погрузочные машинь	sl		30
Производительность			
машин			32
Производительность	погрузочной	машины с	
нагребающими лапаг			33
Производительность			40
Производительность		•	42
Расчет максимальн	•		
комбайна		•	48
Расчет скорости г			
1Г			51
Определение энерге	тических показател	пей механических	
свойств пород			53
Расчет мощност		ода струговой	
установки		• •	54
, Литература			55

Редактор Н.С. Покачалова